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  Abstract— In classical TDOA/FDOA emitter location 

methods, pairs of sensors share the received data to compute the 
CAF and extract the ML estimates of TDOA/FDOA. The 
TDOA/FDOA estimates are then transmitted to a common site 
where they are used to estimate the emitter location.  In some 
recent methods, it has been proposed that rather than sending 
the TDOA/FDOA estimates, it is better to send the entire CAFs to 
the common site.  Thus, it is desirable to use some methods to 
compress the CAFs.  In this paper, we will propose an SVD 
(Singular Value Decomposition) approach for CAF data 
compression. We will see that SVD approach is a beneficial 
method for data compression and also it is a strong tool for de-
noising. Simulation results show that by applying SVD Data 
Compression it is possible to perform accurate location 
estimation in spite of the fact that we transmit fewer bits. Also for 
smaller compression ratio, we even achieve an improvement in 
performance of location estimation compared to the case that we 
do not compress the data at all and that is because of the de-
noising effect of the SVD. 

 
 

Index Terms— Singular Value Decomposition (SVD), Cross 
Ambiguity Function (CAF). 
 
 

I. INTRODUCTION 

Passive emitter localization is a challenging discussion in 
statistical signal processing. The position can be estimated by 
measuring one or more location-dependent signal parameters. 
One of the most popular and common emitter location 
methods is based on TDOA (time-difference-of-arrival) and 
FDOA (frequency-difference-of-arrival) estimation. In the 
classical approach to this method, FDOA and TDOA are 
estimated from the cross-correlation of signals received by 
several pairs of sensors [1]; this is done by computing the 
cross ambiguity function (CAF) [2] and finding the peak of its 
magnitude surface. Then these TDOA/FDOA estimates are 
used in statistical processing to locate the emitter [3]. 

However A challenge in such methods is the need to share 
large amounts of signal data between paired sensors prior to 
computation of the CAF for each pair, and has recently been 
addressed in [4], [5]; note that the subsequent sharing of the 
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TDOA/FDOA estimates requires a very small amount of data 
transfer.      

Recently, some new methods based on TDOA/FDOA 
emitter location have been proposed that estimate the emitter 
location in one stage without extracting the TDOA/FDOA in a 
separate step. The goal of these methods is to improve the 
overall accuracy of the emitter location estimate. The main 
idea of the recent methods is that all pairs of sensors have to 
share their computed CAFs to each other or they have to send 
the CAFs to a common site to estimate the emitter location. 
Thus, there will be a large amount of data transmission and 
this leads to a need for methods to compress the CAFs. One of 
the recently proposed methods is named CAF-map method 
[6]. The main idea of the CAF-map method is to take each 
CAF magnitude and re-map its delay and Doppler axes into 
equivalent axes in x-y position (assuming location in only 2-D 
for simplicity). Then, the emitter’s location is estimated as the 
x-y location that maximizes the average of all the CAF-map 
magnitudes [6]. Alternatively, Weiss and Amar [7], [8], [9] 
developed a single-stage ML method named direct position 
determination (DPD).  The TDOA/FDOA based DPD [9] 
computes the CAF-map between every possible pairing of 
sensors. Then, it uses the CAFs to form a series of matrices 
and the location is estimated by computing the maximum 
eigenvalues of these matrices. Kay and Vankayalapati [10] 
also developed a single-stage method based on the detection 
point of view and they derived the same results. In this paper, 
we develop a method for compressing CAF to reduce the 
amount of data transmission and consequently, to facilitate the 
implementation of these new localization methods.  

Cross Ambiguity Function (CAF) is a complex-valued 2-
dimentional function of TDOA and FDOA: 
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where	̂ݏଵሺݐሻ	is the lowpass equivalent (LPE) of the received 
signal at the first sensor and ̂ݏଶሺݐሻ is the LPE of the received 
signal at the second sensor. CAF measures the correlation 
between ̂ݏଵሺݐሻ and a Doppler-shifted by ߱ and delayed by ߬ 
version of ̂ݏଶሺݐሻ.	 

As mentioned before, the CAF is a two-dimensional 
function. Thus, we can consider the CAF to be an image and 
apply image compression methods to it. Some preliminary 
work in this vein has been presented by the present authors in 
[11] and [12]. In these papers, we applied some image 
compression methods to compress CAF. We also exploited 
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some special properties of the CAF in data compression to get 
better results. The detailed effects of lossy data compression 
on CAF and consequently, its effects on location estimation 
accuracy were assessed too. 

Now, in this paper we develop an SVD (Singular Value 
Decomposition) approach for CAF data compression. We 
show that by applying SVD Data Compression it is possible to 
perform accurate location estimation in spite of the fact that 
we transmit fewer bits. Also for smaller compression ratio, we 
even achieve an improvement in performance of location 
estimation compared to the case that we do not compress the 
data at all and that is because of the de-noising effect of the 
SVD. 

 

II. AN SVD APPROACH FOR CAF DATA COMPRESSION 

The singular value decomposition (SVD) is an important 
tool with many useful signal processing applications 
[13][14][15]. For a complex valued ܯ ൈܰ matrix X, the SVD 
representation will be 
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where U is an ܯ ൈܯ unitary matrix consisting of M left 
singular vectors (LSV) as its columns, V is an ܰ ൈ ܰ unitary 
matrix consisting of N right singular vectors (RSV) as its 
columns and Ʃ is a pseudo-diagonal ܯ ൈܰ matrix with 
nonnegative real singular values (ߪ) on the main diagonal 
ordered such that ߪ 	  ାଵ. r is the number of non-zeroߪ	
singular values, ࢛ is the ith left singular vector and ࢜

ு is 
Hermitian of the ith right singular vector. By truncating the 
above summation to ݇ ൏  terms, we get a rank-k matrix Xk ݎ
that approximates X better than any other rank-k matrix in the 
least square error sense [16], [17], [18]. This is the main idea 
of SVD data compression.  
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The complex valued ܯ ൈܰ matrix ܺ contains MN complex 

values or equivalently 2MN real values. But, in the truncated 
SVD representation of ܺ, we have kM complex values to 
represent matrix ܷ, kN complex values for matrix ܸ, and k 
real values to represent the singular values. Thus, in 
approximation ܺ by ܺ, the compression ratio is: 
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For example the compression ratio for a 128 ൈ 32 matrix 

truncated by k=1 is 25:1. 
 

 As mentioned in [14], the singular value decomposition 
of an image is conceptually similar to its Karhunen-Loeve 
decomposition but in a different manner. The first difference 

is that Karhunen-Loeve decomposition basis are determined 
by the covariance matrix of the random process that generates 
the image but, SVD is defined on the raw data and the image 
itself. The second difference is that if both representations are 
truncated for the purpose of data compression, SVD is the best 
approximation in least square error sense, while Karhunen-
Loeve is the best approximation in mean square error sense. 

CAF magnitude is symmetric around the TDOA/FDOA 
point corresponding to the peak of that [11]. It usually 
contains a big main lobe and several small side lobes that if 
we slice each of them up at different points, we will always 
get a curve with a similar shape. It has been shown that for a 
time-frequency localization operator there are several large 
singular values at the beginning, followed by a sharp plunge in 
the values, with a final asymptotic decay to zero [13]. Since 
the cross Ambiguity function is considered to be a member of 
Cohen’s class of time-frequency representations [19], these 
properties imply that CAF is very close to a low rank matrix. 
Thus, most of the data is concentrated in the first few singular 
vectors and values. 

In reality, the received signals are noisy. The received 
signal at the first sensor will be ̂ݏଵሺݐሻ  ො݊ଵሺݐሻ and the 
received signal at the second sensor will be ̂ݏଶሺݐሻ  ො݊ଶሺݐሻ, 
where ො݊ଵሺݐሻ and ො݊ଶሺݐሻ are the noise terms. Thus, in equation 
(1) we will have three more terms which are corresponding to 
the correlation between ො݊ଵሺݐሻ	and ̂ݏଶሺݐሻ , ො݊ଶሺݐሻ and ̂ݏଵሺݐሻ 
and ො݊ଵሺݐሻ and ො݊ଶሺݐሻ and we can consider the sum of those 
terms as an additive noise . The effect of the noise on the 

singular values is spread across all the singular values but, as 
mentioned before, most of the data is concentrated in the first 
few singular vectors and values. Thus, by SVD truncation we 
reduce the noise and equivalently we increase the signal to 
noise ratio (SNR) [18].  

The singular values of a sample 128x32 CAF are illustrated 
in Fig.1 for two cases: (a) noiseless signals and (b) noisy 
signals. As we can see, there are only 3 to 5 significant 
singular values in the left figure showing that the CAF is very 
close to a low rank matrix. But, the right figure shows that in 
the noisy case the number of significant singular values 
increases to 12. Therefore, it is clear that the signal to noise 
ratio can increase by applying SVD data compression and 
retaining the first few singular values and discarding the rest. 
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(a)

  
(b) 

 
Fig. 1. Singular Values of CAF for two cases: (a) Noiseless 

signal, (b) Noisy signal 
 
 

III. SIMULATION RESULTS 

We examined the performance of the proposed method and 
compare the results using Monte Carlo computer simulations 
(with 500 runs each time). In this simulation, the signals are 
BPSK, the sampling frequency = 20 kHz and the number of 
samples is equal to 4096 and we used direct position 
determination method for location estimation [9]. We assumed 
that 4 moving sensors receive the signals from one stationary 
emitter and for each two of them there is a cross ambiguity 
function which should be computed, compressed and 
transmitted to a common site to do the location estimation. 
Fig.2 shows the effect of data compression on RMS error and 
Fig.3 shows the effect of data compression on standard 
deviation of emitter location estimation for X and Y 
dimensions. The four curves compare the cases (i) without 

compression, (ii) SVD-based compression with compression 
ratio of 25:1, (iii) SVD-based compression with compression 
ratio of 8:1, and (iv) SVD-based compression with 
compression ratio of 5:1. As we can see, even for high 
compression ratio of 25:1, the estimation accuracy is pretty 
close to the case without compression. Surprisingly, the case 
with the compression ratio of 5:1 (and even the case with the 
compression ratio of 8:1 in some points) yields more accurate 
results than without compression case and that is because of 
the de-noising property of SVD-based data compression. 

 
 

 
(a) 
 

 
(b) 

 
Fig. 2. Simulation results showing RMS error for X and Y 
when we compress CAF using SVD-based compression. The 
four curves compare the cases (i) without compression, (ii) 
SVD-based compression with compression ratio of 25:1, (iii) 
SVD-based compression with compression ratio of 8:1, and 
(iv) SVD-based compression with compression ratio of 5:1. 
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(a)      
 

 
     (b) 
 

Fig. 3. Simulation results showing standard deviation for X 
and Y when we compress CAF using SVD-based 
compression. The four curves compare the cases (i) without 
compression, (ii) SVD-based compression with compression 
ratio of 25:1, (iii) SVD-based compression with compression 
ratio of 8:1, and (iv) SVD-based compression with 
compression ratio of 5:1. 
 

 
 
 
 
 
 
 
 
 

IV. CONCLUSION 

We developed an SVD (Singular Value Decomposition) 
approach to compress the two-dimensional CAF to reduce the 
amount of data which has to be shared in emitter location 
systems. In this technique, we have supposed the two-
dimensional CAF as an image. We discussed that CAF is very 
close to a low rank matrix. Thus, it has several large singular 
values, followed by a sharp plunge in the values, with a final 
asymptotic decay to zero. We showed that in noisy cases, most 
of the data is concentrated in the first few singular vectors and 
values. However, the effect of the noise on the singular values 
is spread across all the singular values. Thus, by SVD 
truncation we reduce the noise and equivalently we increase 
the signal to noise ratio (SNR). Finally, Monte Carlo computer 
simulation results showed that it is possible to perform 
accurate location estimations applying SVD Data 
Compression in spite of the fact that we transmit fewer bits. 
As we see in Fig.2 and Fig.3, we can even achieve an 
improvement in performance of location estimation for 
smaller compression ratio, compared to the case that we do not 
compress the data at all and that is because of the de-noising 
effect of the SVD. 
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