Readme File for the Location M-Files
Folder: TDOA-FDOA Estimation
Only need to run the main function called run_correlation_test.m
It is a script that runs everything else. You can set some parameters inside that script.
% This script tests the performance of cross-correlation for estimating TDOA/FDOA
% It computes the CAF and finds the peaks within a Monte Carlo Simmulation
% and then computes the RMS error of the TDOA/FDOA estimates
% It also computes the CRLB using Yeredor's results
% plots of accuracy vs SNR1 are generated

% Set SNR values and uncomment a block of four different signal scenarios

Folder: TDOA-FDOA Location
This folder contains three separate standalone functions:
· Run_TDOA_FDOA_Loc.m
· Performs TDOA/FDOA location assuming that the emitter carrier frequency is perfectly known
· Run_TDOA_FDOA_fo_Loc.m
· Performs TDOA/FDOA location assuming that the emitter carrier frequency is only nominally known
· Run_TDOA_Loc.m
· Performs TDOA-only location

Each function allows the user to use the mouse to select the positions of the sensors (an even number of sensors that are disjointly paired).

Each function creates two plots:
· Plot of sensor positions and emitter location
· A scatter plot of the location estimates and the error ellipse is also plotted but is usually too small to see on this plot
· A zoom in at the emitter location to better see the estimate scatter and the error ellipse.

Typical: Run_TDOA_FDOA_Loc(6,[-30 30],10e-9,1.5,1e9,[100 100]);

function [x_hat,y_hat,C_loc]=Run_TDOA_FDOA_Loc(N,Geo_Range,std_dev_tdoa,std_dev_fdoa,fo,init_loc)
%
% USAGE: [x_hat,y_hat,C_loc]=Run_TDOA_FDOA_Loc(N,Geo_Range,std_dev_tdoa,std_dev_fdoa,fo,init_loc)
%
%
% Outputs: x_hat, y_hat = row vectors of estimates (1 element per Monte Carlo run)
% C_loc = 2x2 CRLB matrix for x_hat & y_hat (units are squared meters)
%
% Emitter is at (0,0)
% Runs simulation of geolocation using TDOA/FDOA for given TDOA/FDOA standard deviations
% User specifies sensor locations using mouse clicks. Sensors are paired without sensor sharing
% Assumes emitter frequency fo is known perfectly.
% Computes CRLB matrix of geolocation x-y estsimates
% Computes error ellipse
% Plots scatter plot & error ellipse of geolocation estimates on origial plot of sensor locations
% Plots zoom of scatter plot & error ellipse
%
% Inputs: N = number of sensors... must be even valued (scalar)
% Geo_Range = 2x1 vector that sets both x & y range of geo space to be covered (in km)
% (Example: [-30 30] sets both x and y range to -30km to 30km
% std_dev_tdoa = Standard Deviation of TDOA measurements in seconds
% std_dev_fdoa = Standard Deviation of FDOA measurements in Hz
% fo = carrier frequency of emitter (assumed known) in Hz
% init_loc = 1x2 vector of initial geolocation in meters [xe_i ye_i]
Typical: Run_TDOA_FDOA_fo_Loc(6,[-30 30],10e-9,1.5,1e9,[100 100 1.0000001e9]);

function [x_hat,y_hat,C_loc]=Run_TDOA_FDOA_fo_Loc(N,Geo_Range,std_dev_tdoa,std_dev_fdoa,fo,init_loc)
%
% USAGE: [x_hat,y_hat,C_loc]=Run_TDOA_FDOA_fo_Loc(N,Geo_Range,std_dev_tdoa,std_dev_fdoa,fo,init_loc)
%
%
% Outputs: x_hat, y_hat = row vectors of estimates (1 element per Monte Carlo run)
% C_loc = 2x2 CRLB matrix for x_hat & y_hat (units are squared meters)
%
% Emitter is at (0,0)
% Runs simulation of geolocation using TDOA/FDOA for given TDOA/FDOA standard deviations
% User specifies sensor locations using mouse clicks. Sensors are paired without sensor sharing
% Assumes emitter frequency fo is unknown and estimates it.
% Computes CRLB matrix of geolocation and carrrier frequency estimates
% Computes geolocation error ellipse
% Plots scatter plot & error ellipse of geolocation estimates on origial plot of sensor locations
% Plots zoom of scatter plot & error ellipse
%
% Inputs: N = number of sensors... must be even valued (scalar)
% Geo_Range = 2x1 vector that sets both x & y range of geo space to be covered (in km)
% (Example: [-30 30] sets both x and y range to -30km to 30km
% std_dev_tdoa = Standard Deviation of TDOA measurements in seconds
% std_dev_fdoa = Standard Deviation of FDOA measurements in Hz
% fo = carrier frequency of emitter (assumed known) in Hz
% init_loc = 1x3 vector of initial geoloc in m and carrier frequency in Hz
% [xe_i ye_i fo_i]

Typical: Run_TDOA_Loc(6,[-30 30],10e-9,[100 100]);

function [x_hat,y_hat,C_loc]=Run_TDOA_Loc(N,Geo_Range,std_dev_tdoa,init_loc)
%
% USAGE: [x_hat,y_hat,C_loc]=Run_TDOA_Loc(N,Geo_Range,std_dev_tdoa,init_loc)
%
%
% Outputs: x_hat, y_hat = row vectors of estimates (1 element per Monte Carlo run)
% C_loc = 2x2 CRLB matrix for x_hat & y_hat (units are squared meters)
%
% Emitter is at (0,0)
% Runs simulation of geolocation using TDOA for given TDOA standard deviations
% User specifies sensor locations using mouse clicks. Sensors are paired without sensor sharing
% Computes CRLB matrix of geolocation x-y estsimates
% Computes error ellipse
% Plots scatter plot & error ellipse of geolocation estimates on origial plot of sensor locations
% Plots zoom of scatter plot & error ellipse
%
% Inputs: N = number of sensors... must be even valued (scalar)
% Geo_Range = 2x1 vector that sets both x & y range of geo space to be covered (in km)
% (Example: [-30 30] sets both x and y range to -30km to 30km
% std_dev_tdoa = Standard Deviation of TDOA measurements in seconds
% init_loc = 1x2 vector of initial geolocation in meters [xe_i ye_i]

Folder: Single Platform Methods

This folder contains two separate functions that call others that are needed:
· run_doppler.m
· Performs Doppler-based single platform location
· run_LBI.m
· Performs LBI-based single platform location

Each function creates two plots:
· Plot of sensor trajectory and emitter location
· A scatter plot of the location estimates and the error ellipse is also plotted but is usually too small to see on this plot
· A zoom in at the emitter location to better see the estimate scatter and the error ellipse.

Typical: run_doppler(3,60,1,1,10,200,[20e3 20e3 0 1e9],[21e3 19e3 0 1.000001e9]);

function run_doppler(g,T,del_T,dop_std_dev,alt_kft,vel,p_true,p_est_init)
%
% Usage: run_doppler(g,T,del_T,dop_std_dev,alt_kft,vel,p_true,p_est_init);
%
% Inputs: g = platform turn acceleration in g's (e.g., g = 2 is a 2g turn)
% T = total time of observation in seconds (e.g., T = 60 is a 60 second observation time)
% dop_std_dev = standard deviation of frequency estimates in Hz(scalar)
% alt_kft = altitude of the platform in kft (e.g., alt_kft = 10 gives alt of 10,000 ft)
% vel = speed of platform in m/s (scalar)
% p_true = True Emitter Location & Frequency (1x4 Vector)
% [xe ye ze fo] with units [m m m Hz]
% p_init = Initial Estimate of Emitter (1x4 Vector)
% [xe_init ye_init ze_init fo_init] with units [m m m Hz]
%
% Outputs: p_est_iter = matrix of estimate iterations
% Each column is 4x1 estimate of p_true.'
% H_true = True Jacobian computed at true emitter location for use in CRLB computation
% (Nx4 where N is the number of frequency measurements set by T and del_T)

Typical: run_LBI(3,60,1,10,30,200,[20e3 20e3 0 pi/2],[20e3 20e3 0 0],1e9,1.5);

function run_LBI(g,T,del_T,phi_std_dev,alt_kft,vel,p_true,p_est_init,fo,L)
%
% Usage: run_doppler(g,T,del_T,dop_std_dev,alt_kft,vel,p_true,p_est_init);
%
% Inputs: g = platform turn acceleration in g's (e.g., g = 2 is a 2g turn)
% T = total time of observation in seconds (e.g., T = 60 is a 60 second observation time)
% phi_std_dev = standard deviation of LBI phase estimates in degrees(scalar)
% alt_kft = altitude of the platform in kft (e.g., alt_kft = 10 gives altitude of 10,000 ft)
% vel = speed of platform in m/s (scalar)
% p_true = True Emitter Location & Frequency (1x4 Vector)
% [xe ye ze phi_o] with units [m m m rad]
% p_est_init = Initial Estimate of Emitter (1x4 Vector)
% [xe_init ye_init ze_init phi_o] with units [m m m rad]
% fo = signal's center frequency (in Hz)
% L = baseline length in meters
%
% Outputs: p_est_iter = matrix of estimate iterations
% Each column is 4x1 estimate of p_true.'
% H_true = True Jacobian computed at true emitter location for use in CRLB computation
% (Nx4 where N is the number of frequency measurements set by T and del_T)

Folder: DPD-MP

A single script file runs the simulation: Simulation_DPD_all_in_one.m

% This does one location estimation processing for a given scenario and
% plots the true location and the estimate
% A loop could be put in to run this as Monte Carlo runs

% Note that this is for the scenario proposed in Wiess's paper where there
% are only two receivers that are flying along a trajectory and take 5
% snapshots along the way. Could be modified to do just one snapshot with
% more receivers.

[bookmark: _GoBack]Parameters can be set in the first block of the code.
