State University of New York
EECE 260
Electrical Circuits Prof. Mark Fowler

Complex Number Review

Complex Numbers

Complex numbers arise as roots of polynomials.

Definition of imaginary \#j and some resulting properties:	$\Rightarrow(-j)(j)=1$
in	$\Rightarrow(-j)(-j)=-1$

Recall that the solution of differential equations involves finding roots of the "characteristic polynomial"

So...differential equations often involve complex numbers

Rectangular form of a complex number:

$$
\begin{array}{cl}
z=a+j b & a=\operatorname{Re}\{z\} \\
\uparrow \uparrow & b=\operatorname{Im}\{z\}
\end{array}
$$

The rules of addition and multiplication are straight-forward:

$$
\begin{array}{|ll|}
\hline \text { Add : } & (a+j b)+(c+j d)=(a+c)+j(b+d) \\
\text { Multiply: } & (a+j b)(c+j d)=(a c-b d)+j(a d+b c)
\end{array}
$$

Polar Form

$z=r e^{j \theta} \quad r>0$

If r is negative then it is NOT in polar form!!!

Polar form... an alternate way to express a complex number...

Polar Form...
good for multiplication and division

Note: you may have learned polar form as $r \angle \theta \ldots$ we will NOT use that here!!
The advantage of the $r e^{j \theta}$ is that when it is manipulated using rules of exponentials and it behaves properly according to the rules of complex \#s:

$$
\left(a^{x}\right)\left(a^{y}\right)=a^{x+y} \quad a^{x} / a^{y}=a^{x-y}
$$

Multiplying Using Polar Form

$\left(r_{1} e^{j \theta_{1}}\right)\left(r_{2} e^{j \theta_{2}}\right)=r_{1} r_{2} e^{j\left(\theta_{1}+\theta_{2}\right)}$

$$
\begin{aligned}
& z^{n}=\left(r e^{j \theta}\right)^{n}=r^{n} e^{j n \theta} \\
& z^{1 / n}=r^{1 / n} e^{j \theta / n}
\end{aligned}
$$

Dividing Using Polar Form

$$
\frac{\left(r_{1} e^{j \theta_{1}}\right)}{\left(r_{2} e^{j \theta_{2}}\right)}=\frac{r_{1}}{r_{2}} e^{j\left(\theta_{1}-\theta_{2}\right)}
$$

$$
\frac{1}{z_{2}}=\frac{1}{r_{2} e^{j \theta_{2}}}=\frac{1}{r_{2}} e^{-j \theta_{2}}
$$

We need to be able convert between Rectangular and Polar Forms... this is made easy and obvious by looking at the geometry (and trigonometry) of complex \#s:

Geometry of Complex Numbers

Conversion Formulas

$$
\begin{aligned}
& b=r \sin \theta \\
& a=r \cos \theta
\end{aligned} \longleftrightarrow \begin{aligned}
& r=\sqrt{a^{2}+b^{2}} \\
& \theta=\tan ^{-1}\left(\frac{b}{a}\right)
\end{aligned}
$$

Complex Exponentials vs. Sines and Cosines

Summary of Rectangular \& Polar Forms

Rect Form:

$z=a+j b$
$\operatorname{Re}\{z\}=a=r \cos \theta$
$\operatorname{Im}\{z\}=b=r \sin \theta$

Polar Form:

$$
z=r e^{j \theta} \quad r \geq 0 \quad \theta \in(-\pi, \pi]
$$

$$
|z|=r=\sqrt{a^{2}+b^{2}}
$$

$$
\angle \mathrm{z}=\theta=\tan ^{-1}\left(\frac{b}{a}\right)
$$

Warning: If you calculate the angle by first dividing b / a and then taking the inverse tangent... your calculator will give you the wrong answer whenever you have $a<0$. In other words, for z values that lie in the II and III quadrants.

You can always fix this by either adding or subtracting $\pi \ldots$.. choose add or subtract in order to give an angle that lies between $-\pi$ and $+\pi$.

Use common sense... looking at the signs of a and b will tell you what quadrant z is in... make sure your angle agrees with that!!! (See the examples)

Conjugate of Z

Denoted as
 Z^{*} or \bar{Z}

$$
\begin{array}{ll}
z=a+j b & \Rightarrow \quad z^{*}=a-j b \\
z=r e^{j \theta} \quad \Rightarrow \quad z^{*}=r e^{-j \theta}
\end{array}
$$

Properties of z^{*}
Imaginary parts cancel

1. $z+z^{*}=2 \operatorname{Re}\{z\}$
2. $z \times z^{*}=(a+j b)(a-j b)=a^{2}+b^{2}=|z|^{2}$

Summary of General Results

Polar to Rect

Given: $z=r e^{j \theta}$
Convert: $z=r \cos \theta+j r \sin \theta$

For Rect Form

Rect to Polar

Given: $z=a+j b$
Convert : $z=\sqrt{a^{2}+b^{2}} e^{j \tan ^{-1}(b / a)}$
Add / Subtract: $\quad(a+j b) \pm(c+j d)=(a \pm c)+j(b \pm d)$
Multiply: $\quad(a+j b)(c+j d)=(a c-b d)+j(a d+b c)$

Warning: If $a<0$ calculator may give wrong angle... $\pm \pi$ to correct

Multiplying Using Polar Form

$\left(r_{1} e^{j \theta_{1}}\right)\left(r_{2} e^{j \theta_{2}}\right)=r_{1} r_{2} e^{j\left(\theta_{1}+\theta_{2}\right)}$
$z^{n}=\left(r e^{j \theta}\right)^{n}=r^{n} e^{j n \theta}$
$z^{1 / n}=r^{1 / n} e^{j \theta / n}$

Dividing Using Polar Form

$$
\frac{\left(r_{1} e^{j \theta_{1}}\right)}{\left(r_{2} e^{j \theta_{2}}\right)}=\frac{r_{1}}{r_{2}} e^{j\left(\theta_{1}-\theta_{2}\right)}
$$

$$
\frac{1}{Z_{2}}=\frac{1}{r_{2} e^{j \theta_{2}}}=\frac{1}{r_{2}} e^{-j \theta_{2}}
$$

Finding Magn/Angle of Rect

Given: $z=a+j b$
$|z|=\sqrt{a^{2}+b^{2}} \quad \angle z=\tan ^{-1}(b / a)$
Finding Magn/Angle of Products

$$
\begin{aligned}
& \left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| \\
& \angle\left\{z_{1} z_{2}\right\}=\angle\left\{z_{1}\right\}+\angle\left\{z_{2}\right\}
\end{aligned}
$$

Finding Magn/Angle of Ratios

$$
\begin{aligned}
& \left|z_{1} / z_{2}\right|=\left|z_{1}\right| /\left|z_{2}\right| \\
& \angle\left\{z_{1} / z_{2}\right\}=\angle\left\{z_{1}\right\}-\angle\left\{z_{2}\right\}
\end{aligned}
$$

A Few Tricks

$$
\frac{1}{j}=-j \quad \text { Proof: } \quad \frac{1}{j}=\frac{1}{e^{j \pi / 2}}=(1 / 1) e^{j(0-\pi / 2)}=e^{-j \pi / 2}=\cos (-\pi / 2)+j \sin (\pi / 2)=0-j
$$

$$
-1=e^{ \pm j \pi} \quad \text { Proof: } \quad e^{ \pm j \pi}=\cos (\pm \pi)+j \sin (\pm \pi)=-1+j 0
$$

$$
1=e^{j 0} \quad \text { Proof: } \quad e^{j 0}=\cos (0)+j \sin (0)=1+j 0
$$

$$
j=e^{j \pi / 2} \quad \operatorname{Proof}: e^{j \pi / 2}=\cos (\pi / 2)+j \sin (\pi / 2)=0+j 1
$$

$$
-j=e^{-j \pi / 2} \quad \text { Proof: } e^{-j \pi / 2}=\cos (-\pi / 2)+j \sin (-\pi / 2)=0+j(-1)
$$

Example \#1a: Given: $z=-4-j 3$ Convert to Polar Form

$$
\text { Use: } Z=|z| e^{j \angle z}
$$

$$
\begin{gathered}
|z|=\sqrt{(-4)^{2}+(-3)^{2}}=\sqrt{16+9}=\sqrt{25}=5 \\
\angle z=\tan ^{-1}(-3)=\tan ^{-1}(0.75)-\pi=0.64-\pi \approx-2.5 \mathrm{rad} \\
z=-4-j 3) Z z=5 e^{-j 2.5}
\end{gathered}
$$

Example \#1b: Given: $z=-4+j 3$ Convert to Polar Form

$$
\text { Use: } Z=|z| e^{j \angle z}
$$

$$
|z|=\sqrt{(-4)^{2}+(3)^{2}}=\sqrt{16+9}=\sqrt{25}=5
$$

$$
\left.\angle z=\tan ^{-1}\left(\frac{3}{-4}\right)=\tan ^{-1}(-0.75)+\pi\right)=-0.64+\pi \approx 2.5 \mathrm{rad}
$$

$$
\operatorname{Im}_{\uparrow} \quad z=-4+j 3 \Leftrightarrow z=5 e^{j 2.5}
$$

Comparing Ex. 1a and 1b we see that they are conjugates of each other... note how conjugation just changes the sign in front of j for both rect form and polar form!!!

Example \#2: Given: $z=3 e^{j \pi / 4} \quad$ Convert to Rect Form

Use: $\quad z=|z| \cos (\angle z)+j|z| \sin (\angle z)$
By Inspection: $|Z|=3 \quad \angle Z=\pi / 4$

$$
\cos (\pi / 4)=1 / \sqrt{2} \quad \sin (\pi / 4)=1 / \sqrt{2}
$$

Your calculator will give 0.707
but more precisely it is $1 /$ sqrt(2)

$$
z=3 e^{j \pi / 4} \Longleftrightarrow z=\frac{3}{\sqrt{2}}+j \frac{3}{\sqrt{2}}
$$

Example \#3: Given: $z=j e^{-j \pi / 2}$ Write it in Polar Form

Isn’t it ALREADY in polar form!!!??? NO!!!!!!!

View it as a product of two complex numbers... $\quad Z=[\underbrace{j}_{z_{1}} \underbrace{\left[e^{-j \pi / 2}\right]}_{z_{2}}$
and note that the first is in rect form: $0+\mathrm{j}$
Since multiplication is easier with polar form... convert the rect form \# into polar form

$$
\begin{aligned}
& |j|=\sqrt{0^{2}+1^{2}}=1 \\
& \angle j=\tan ^{-1}(1 / 0)=\pi / 2
\end{aligned}
$$

Easier to see graphically!!

$$
\left.z=j e^{-j \pi / 2}=\left[e^{j \pi / 2}\right] e^{-j \pi / 2}\right]=e^{j(\pi / 2-\pi / 2)}=e^{j 0}=1
$$

$$
z=j e^{-j \pi / 2} \Rightarrow z=1
$$

Example \#4: Given: $z=\frac{2+j 3}{-3+j 2}$ Find magnitude and angle

$$
\begin{gathered}
\text { Use: } \begin{array}{c}
\left|z_{1} / z_{2}\right|=\left|z_{1}\right| /\left|z_{2}\right| \\
\angle\left\{z_{1} / z_{2}\right\}=\angle\left\{z_{1}\right\}-\angle\left\{z_{2}\right\}
\end{array} \\
\left|\frac{2+j 3}{-3+j 2}\right|=\frac{|2+j 3|}{|-3+j 2|}=\frac{\sqrt{2^{2}+3^{2}}}{\sqrt{(-3)^{2}+2^{2}}}=\frac{\sqrt{13}}{\sqrt{13}}=1 \\
\angle\left\{\frac{2+j 3}{-3+j 2}\right\}=\angle\{2+j 3\}-\angle\{-3+j 2\} \approx 0.983-(-0.588+\pi)=1.57 \mathrm{rad} \\
\left|\frac{2+j 3}{-3+j 2}\right|=1 \\
\angle\left\{\frac{2+j 3}{-3+j 2}\right\} \approx 1.57 \mathrm{rad} \xrightarrow{\begin{array}{c}
\text { Correcting for case when real part } \\
\text { is negative (i.e., quads II } \& \text { III })
\end{array}}
\end{gathered}
$$

Example \#5a: Given: $z=\frac{R_{1}+1 / j C}{R_{2}+j L}$ Find magnitude and angle

First some common manipulations:

$$
z=\frac{R_{1}+1 / j C}{R_{2}+j L}=\frac{j C}{j C} \frac{\left(R_{1}+1 / j C\right)}{\left(R_{2}+j L\right)}=\frac{j R_{1} C+j C / j C}{j R_{2} C+j C j L}=\frac{1+j R_{1} C}{-L C+j R_{2} C}
$$

Now to find magnitude:

$$
|z|=\frac{\left|1+j R_{1} C\right|}{\left|-L C+j R_{2} C\right|}=\frac{\sqrt{1^{2}+\left(R_{1} C\right)^{2}}}{\sqrt{(-L C)^{2}+\left(R_{2} C\right)^{2}}}=\frac{\sqrt{1+\left(R_{1} C\right)^{2}}}{\sqrt{(L C)^{2}+\left(R_{2} C\right)^{2}}}=\frac{\sqrt{1+\left(R_{1} C\right)^{2}}}{C \sqrt{L^{2}+R_{2}^{2}}}
$$

Now to find angle:

Example \#5b: Given: $Z=\frac{R_{1}+1 / j C}{R_{2}+j L}$ Find magnitude and angle

A slightly different way to do it:

$$
z=\frac{R_{1}+1 / j C}{R_{2}+j L}=\frac{R_{1}-j / C}{R_{2}+j L}
$$

Now to find magnitude:

$$
|z|=\frac{\left|R_{1}-j / C\right|}{\left|R_{2}+j L\right|}=\frac{\sqrt{R_{1}^{2}+(-1 / C)^{2}}}{\sqrt{R_{2}^{2}+L^{2}}}=\frac{\sqrt{R_{1}^{2}+1 / C^{2}}}{\sqrt{R_{2}^{2}+L^{2}}}
$$

Now to find angle:

$$
\begin{aligned}
\angle \mathrm{z} & =\angle\left\{R_{1}-j / C\right\}-\angle\left\{R_{2}+j L\right\} \\
& =\tan ^{-1}\left\{\frac{-1 / C}{R_{1}}\right\}-\tan ^{-1}\left\{L / R_{2}\right\} \\
& =\tan ^{-1}\left\{\frac{-1}{R_{1} C}\right\}-\tan ^{-1}\left\{L / R_{2}\right\}
\end{aligned}
$$

Even though these have a different form than the Ex 5a results they give the exact same numerical values!!!

Example \#6:

$$
\text { Given: } \quad Z=\frac{-1}{R_{2}+j L} \quad \text { Find magnitude and angle }
$$

Find magnitude:

$$
|z|=\frac{|-1|}{\left|R_{2}+j L\right|}=\frac{1}{\sqrt{R_{2}^{2}+L^{2}}}
$$

Now to find angle:

$$
\begin{aligned}
\angle z & =\angle\{-1\}-\angle\left\{R_{2}+j L\right\} \\
& = \pm \pi-\tan ^{-1}\left\{L / R_{2}\right\}
\end{aligned}
$$

