Why are Low Impedance Microphones Better Than High-Imp.

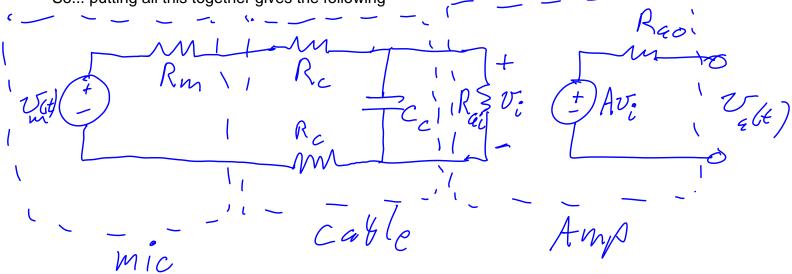
Microphones come in a variety of types based on a variety of factors. For example, there are "dynamic" microphones that use a magnet and coil to convert sound waves into electrical signals by exploiting the physics of magnetic fields; there are "condensor" microphones that use a DC voltage source and a capacitor to convert sound waves into electrical signals by exploiting the physics of electric fields. However, there is another factor that leads to a split into two groups: high-impedance microphones and low-impedance microphones. (In principle, any mic can be high- or low- impedance regardless if it is a dynamic mic or a condensor... however, high-impedance condensor mics are not very common at all). We'll see below what defines a low-imp or high-imp mic.

If you search on the web for information about microphones you'll see most sites advising to get lowimepdance microphones because they are better (they cost more though). These sites will usually state that low-imp mics are better because they have better frequency response and have better noise immunity. Here we'll use Signals & Systems ideas to understand the first advantage: why do low-im mics have a better frequency response?

So... physically we have: the mic... connected by a cable... to an audio amplifier of some sort

To do this we first need a circuit model (and then math model) of how a microphone works together with the amplifier it plugs into. So, first there is the microphone... whose job it is to generate a wiggling voltage... so it is a time-varying voltage source... and because it is not an **ideal** source it must be modeled to account for its non-ideal characteristics.

* We have seen in circuits that any physical voltage source can be represented by its Thevenin equivalent circuit.


Then there is the cable... whose job it is to convey the voltage generated by the mic over to the amplifier. To do this requires (at least) two wires... a voltage is defined between two points, so we connect a wire to each point (there are some mic cables that have *more* than 2 wires in the cable but we will ignore that case here.

* We have seen in circuits that a two-wire cable can be modeled as a simple RC circuit. The resistance comes from the fact that wires have some small resistance per unit length and the capacitance comes from the fact that the two wires are each covered with insulation so we have two conductors separated by a dielectric... which is a capacitor.

Finally we have an amplifier.. whose job is to take the voltage at its input terminals and amplify it into a bigger voltage to drive the power amp or some other electronics and then that signal gets its power amplified by the power amp to drive speakers (the pre-amp and power amp might be designed as one single unit)

* We can model the amplifier as an input resistance with a dependent voltage source at its output.

So... putting all this together gives the following

Now let's characterize these equivalent circuit parameters:

Rm is the impedance of the mic (simplified here as a pure resistance)...

A high imp mic will have an Rm value in the range of 10kohm or more

A low impedance mic will have an Rm value or 600 ohms or less but not much less than 200 ohms or so

Our goal here is to see the effect of those tow cases!

A typical mic cable will have a resistance per unit length of about 0.08 ohms/meter.. so even if we have a long cable of 100m we will only have a cable resistance of 8 ohms... so we can ignore the effect of Rc since it will be small compared to Rm even for the low imp mic.

A typical mic cable will have a capacitance per unit lenght of about 100 picoF per meter so for a 20 meter cable that would be 2 nanoF... we should not ignore that

The amplifier design will be done such that input resistance will be large compared to the mic's impedance... usually Rai is 10 times or more the value of Rm. Because of the dependent source model for the amplifier the only part of the amplfier model that impacts the behaviour of voltage v_i(t) at the amplfier's input is the amplfier's input resistance (that is the beauty of using such a model for the amplifier!)

So... given all this the equivalent circuit to be analyzed is...

Rm $v_i(t)$ Um(t)

Note: VG (K) re form

Now, we can analyze this circuit to find its frequency response. We convert all voltages to phasor form and convert all Rs and Cs to impedances.. it is easiest to do this in the s-form and then convert to the jw-form

$$V_{4(s)}(z) = \frac{1}{T_{cs}} \sum_{\substack{R \in i \\ R \in i}} V_{i}(s)} \sum_{\substack{Z_{H} = (\frac{L}{Cs})}} \frac{1}{R_{cs}} \sum_{\substack{R \in i \\ R \in i}} \frac{1}{R_{cs}} \sum_{\substack{R \in$$

Rm Cc $\langle | \rangle$ $H(s) = \frac{1}{5 + \frac{1}{R_{ij}C_c}}$ where $R_{A} = \frac{R_{ai} R_{m}}{R_{ai} + R_{m}}$ Recall... on amp designed for cese with a mic having a given Rm would have Rai ZIORm (A) $\implies R_{\mu} \simeq R_{m}$ $\frac{1}{H(S)} \approx \frac{\frac{1}{R_m C_c}}{\frac{5 + \frac{1}{R_m C_c}}{\frac{1}{R_m C_c}}}$ Su Rai has hegligible effect when (A) is satisfied, Note that this is a lot order low pros filter with cut off frequency of $W_c = \frac{1}{R_m C_c}$

 $Or \quad f_c = \frac{1}{2\pi R_m C_c}$ the Book plat tells us: Evequencies above fe ave attencested. Note that Cc is set by the cube length. A 50 ... as mic impedance Rm goes up ... fi goes down and that vadecas more high frequency can tart.

- Big Picture Regult For a given cable longth... a high imp. mit will have more high freg. attenation then a low mp mic !! For 20 m Cable $C_c \approx 2 n F$ Mic Imp fc Low Rm = 600 132 RHZ (Far above highest Andio Free) 8 RHZ (Far below highest Andio Free) High Rus Wrn Can't even use a 20m cabe w/ a HiZ Mic !