

State University of New York

EECE 301 Signals & Systems Prof. Mark Fowler

Note Set #4

• System Modeling and Some Examples

Math Models for Systems

- Many physical systems are modeled w/ <u>Differential Eqs</u>
 - Because physics shows that electrical (& mechanical!) components often have "V-I Rules" that depend on derivatives

$$a_2 \frac{d^2 y(t)}{dt^2} + a_1 \frac{dy(t)}{dt} + a_0 y(t) = b_1 \frac{dx(t)}{dt} + b_0 x(t)$$

Given: Input $x(t)$
Find: Ouput $y(t)$

This is what it means to "solve" a differential equation!!

- However, engineers use <u>Other Math Models</u> to help solve and analyze differential eqs
 - The concept of "<u>Frequency Response</u>" and the related concept of "<u>Transfer Function</u>" are the most widely used such math models
 - > "Fourier Transform" is the math tool underlying Frequency Response
 - Another helpful math model is called "<u>Convolution</u>"

System Modeling

To do engineering design, we must be able to accurately predict the quantitative behavior of a circuit or other system.

This requires math models:

Similar ideas hold for hydraulic, chemical, etc. systems...

"differential equations rule the world"

Simple Circuit Example:

Sending info over a wire cable between two computers

5/16

Effective Operation:

7/16

Now... because this is a <u>linear</u> system (it only has *R*, *L*, *C* components!) we can analyze it by **<u>superposition</u>**. 5v Decompose the input... x(t)-5v + 5v t 0 1 0 1 ... 5v 0 0 1 1 -5v 8/16

Output Components (Blue) Standard Exponential Response **Input Components** Learned in "Circuits": 5v 5v -5v -5v -+╇ 5v 5v t 1 +t -5v --5v -9/16

Output is a "smoothed" version of the input... it is harder to distinguish "ones" and "zeros"... it will be even harder if there is noise added onto the signal!

Progression of Ideas an Engineer Might Use for this Problem

Big picture for CT Systems:

Nature is filled with "Derivative Rules"

- Capacitor and Inductor i-v Relationships
- Force, Mass and Acceleration Relationships
- Etc.

Thus C-T Systems are mathematically modeled by Differential Equations

⇒There are a lot of practical C-T systems that can be <u>modeled</u> by differential equations.

In particular, we will be interested in... Linear, Constant-Coefficient, Ordinary Diff Eqs!

D-T System Example

<u>Recall:</u> We are mostly interested in D-T systems that arise in computer processing of signals collected by sensors.

We illustrate with a simple automotive example: A sensor provides a measure of the "instantaneous MPG" for a car. Suppose the sensor gives this every 10 seconds. We want to keep track of and display the average MPG since "time zero".

Let y[n] be the average MPG after the n^{th} measurement.

Now, one way to do this is to store ALL the measurements and each time you get a new one just average them...

$$y[n] = \frac{1}{n+1} (x[0] + x[1] + \dots + x[n])$$

But... how much memory should we implement? Who knows how long this will run???

So we need a better way. Write y[n] in terms of y[n-1]:

$$y[n] = \frac{1}{n+1} \left(n \left[\frac{1}{n} \left(x[0] + x[1] + \dots + x[n-1] \right) \right] + x[n] \right)$$

$$= y[n-1]$$
This is a math model for this DT system
$$y[n] = \frac{n}{n+1} y[n-1] + \frac{1}{n+1} x[n]$$
This kind of math model is called a "Difference Equation"

This system can easily be computed in software...

BIG PICTURE

- Physical (nature!) systems are C-T systems modeled by <u>differential equations</u>... e.g., RLC Circuits, Electric Motors, etc.
- D-T systems are modeled by <u>difference equations</u>... these are generally implemented using computer HW/SW
- Both C-T & D-T systems (at least a large subset) have:
 Zero-Input part of response (due to Initial Conditions)
 e.g., Homogeneous solution of CT Diff Eq
 Zero-State part of Response (due to Input)

Our Focus will be <u>mostly</u> on the Zero-State Response

