State University of New York

EECE 301
 Signals \& Systems Prof. Mark Fowler

Note Set \#4

- System Modeling and Some Examples

Physical View:

System Model View

Apply input signal here as a voltage (or a current)

Image from llg.cubic.org/tools/sonyrm/
Schematic View

From Pedal Power Column by Robert Keeley, in Musician's Hotline Magazine

System View

Math Model... quantitatively relates input signal's math to the output signal's math... Allows us to understand and predict how the system will work!

Math Models for Systems

- Many physical systems are modeled w/ Differential Eqs
- Because physics shows that electrical (\& mechanical!) components often have "V-I Rules" that depend on derivatives

$$
\begin{array}{|l|}
a_{2} \frac{d^{2} y(t)}{d t^{2}}+a_{1} \frac{d y(t)}{d t}+a_{0} y(t)=b_{1} \frac{d x(t)}{d t}+b_{0} x(t) \\
\text { Fiven: Input } x(t) \\
\text { Find: } y(t)
\end{array}
$$

This is what it means to "solve" a differential equation!!

- However, engineers use Other Math Models to help solve and analyze differential eqs
- The concept of "Frequency Response" and the related concept of "Transfer Function" are the most widely used such math models > "Fourier Transform" is the math tool underlying Frequency Response
- Another helpful math model is called "Convolution"

System Modeling

To do engineering design, we must be able to accurately predict the quantitative behavior of a circuit or other system.

This requires math models:

Mechanical

Device Rules
Mass: $M\left(d^{2} p(t) / d t^{2}\right)$
Spring: $k_{x} p(t)$
Damping: $k_{d}(d p(t) / d t)$
System Rules -Sum of forces -etc.

Similar ideas hold for hydraulic, chemical, etc. systems...

Simple Circuit Example:

Sending info over a wire cable between two computers

Two practical examples of the cable
"Twisted Pair" of Insulated
Wires
$50 \mathrm{nF} / \mathrm{km}$

Recall: resistance increases with wire length

Simple Model:

Effective Operation:

Use Loop Equation \& Device Rules:

$$
\begin{aligned}
& x(t)=v_{R}(t)+y(t) \\
& v_{R}(t)=R i(t) \\
& i(t)=C \frac{d y(t)}{d t}
\end{aligned}
$$

$$
\frac{d y(t)}{d t}+\frac{1}{R C} y(t)=\frac{1}{R C} x(t)
$$

This is the Differential Equation to be "Solved":
Given: Input $x(t) \quad$ Find: Solution $y(t)$

Recall: A "Solution" of the D.E. means... The function that when put into the left side causes it to reduce to the right side

Differential Equation \& System ... the solution is the output

Now... because this is a linear system (it only has R, L, C components!) we can analyze it by superposition.

Input Components

Output Components (Blue)

Standard Exponential Response
Learned in "Circuits":

Output Components

Output is a "smoothed" version of the input... it is harder to distinguish "ones" and "zeros"... it will be even harder if there is noise added onto the signal!

Progression of Ideas an Engineer Might Use for this Problem

Physical System:

Schematic System:

Mathematical System:

$$
\frac{d y(t)}{d t}+\frac{1}{R C} y(t)=\frac{1}{R C} x(t)
$$

Mathematical Solution:

Big picture for CT Systems:

Nature is filled with "Derivative Rules"

- Capacitor and Inductor i-v Relationships
- Force, Mass and Acceleration Relationships
- Etc.

Thus C-T Systems are mathematically modeled by Differential Equations
\Rightarrow There are a lot of practical C-T systems that can be modeled by differential equations.

In particular, we will be interested in... Linear, Constant-Coefficient, Ordinary Diff Eqs!

D-T System Example

Recall: We are mostly interested in D-T systems that arise in computer processing of signals collected by sensors.

We illustrate with a simple automotive example: A sensor provides a measure of the "instantaneous MPG" for a car. Suppose the sensor gives this every 10 seconds. We want to keep track of and display the average MPG since "time zero".

Let $x[n], n=1,2,3, \ldots$ be a sequence of MPG measurements
Input
D-T signal because you are not continuously measuring!

Let $y[n]$ be the average MPG after the $n^{\text {th }}$ measurement.

Output

Now, one way to do this is to store ALL the measurements and each time you get a new one just average them...

$$
y[n]=\frac{1}{n+1}(x[0]+x[1]+\cdots+x[n])
$$

But... how much memory should we implement? Who knows how long this will run???

So we need a better way. Write $y[n]$ in terms of $y[n-1]$:

This kind of math model is called a "Difference Equation"

This system can easily be computed in software...

$$
y[n]=\frac{n}{n+1} y[n-1]+\frac{1}{n+1} x[n]
$$

Initial
 Condition

\boldsymbol{n}	$\boldsymbol{x}[\boldsymbol{n}]$	$\boldsymbol{y}[\boldsymbol{n}]$
-1	-	0
0	35	$\mathrm{y}[0]=(0 / 1) \mathrm{y}[-1]+(1 / 1) \mathrm{x}[0]=35$
1	39	$\mathrm{y}[1]=(1 / 2) \mathrm{y}[0]+(1 / 2) \mathrm{x}[0]=(35+39) / 2$
2	43	$\mathrm{y}[2]=(2 / 3) \mathrm{y}[1]+(1 / 3) \mathrm{x}[1]$
3	36	Etc.
Etc.	Etc.	

$$
\begin{aligned}
& \mathrm{y}[0]=0 \\
& \text { for } \mathrm{n}=1 \text { to ??? } \\
& \quad \mathrm{y}(\mathrm{n})=(\mathrm{n} /(\mathrm{n}+1))^{*} \mathrm{y}(\mathrm{n}-1)+(1 /(\mathrm{n}+1))^{*} \mathrm{x}(\mathrm{n}) \\
& \text { end }
\end{aligned}
$$

This system can also be computed in hardware...

BIG PICTURE

- Physical (nature!) systems are C-T systems modeled by differential equations... e.g., RLC Circuits, Electric Motors, etc.
- D-T systems are modeled by difference equations... these are generally implemented using computer HW/SW
- Both C-T \& D-T systems (at least a large subset) have:
- Zero-Input part of response (due to Initial Conditions)
- e.g., Homogeneous solution of CT Diff Eq
- Zero-State part of Response (due to Input)

Our Focus will be mostly on the Zero-State Response

