State University of New York

EECE 301
 Signals \& Systems Prof. Mark Fowler

Note Set \#8

- C-T Signals: Computing the FS Coefficients

Analytically Finding FS Coefficients

Q: How do we find the Exponential Form FS Coefficients?
A: Use this: (it can be proved but we won't do that here!)

$$
\left.c_{k}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} x(t) e^{-j k \omega_{0} t} d t\right\} \begin{aligned}
& \text { Integrate over } \\
& \begin{array}{l}
\text { any complete } \\
\text { period }
\end{array} \\
& \begin{array}{c}
\text { Some books use } \\
\text { only } t_{0}=0 .
\end{array} \\
& \hline
\end{aligned}
$$

where: $\quad T$ = fundamental period of $x(t)$ (in seconds)

$$
\begin{aligned}
& \omega_{0}=\text { fundamental frequency of } x(t) \text { (in rad/second) } \\
&=2 \pi / T \\
& t_{0}=\underline{\text { any }} \text { time point (you pick } t_{0} \text { to ease calculations) } \\
& k \in \text { all integers }(\ldots-3,-2,-1,0,1,2,3, \ldots) \quad \begin{array}{l}
\text { Looks like we have to } \\
\text { do this integral } \\
\text { infinitely many } \\
\text { times!!! } \\
\text { But...Usually you } \\
\text { can do the integral in } \\
\text { terms of arbitrary } k!
\end{array}
\end{aligned}
$$

Comment: Note that for $k=0$ this gives

$$
c_{0}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} x(t) d t
$$

c_{0} is the "DC offset", which is the time-average over one period

Q: How do we find the Sine-Cosine Form FS Coefficients?

A: Use these: (can be proved but we won't do that here!)

$$
a_{0}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} x(t) d t
$$

a_{0} is the "DC offset", which is the time-average over one period

$$
a_{k}=\frac{2}{T} \int_{t_{0}}^{t_{0}+T} x(t) \cos \left(k \omega_{0} t\right) d t
$$

$$
b_{k}=\frac{2}{T} \int_{t_{0}}^{t_{0}+T} x(t) \sin \left(k \omega_{0} t\right) d t
$$

where: $\quad T=$ fundamental period of $x(t)$ (in seconds)
$\omega_{0}=$ fundamental frequency of $x(t)$ (in rad/second)
$=2 \pi / T$
$t_{0}=\underline{\text { any }}$ time point (you pick t_{0} to ease calculations)
$k \in$ all integers

Q: How do we find the Amplitude-Phase Form FS Coefficients?

A: No easy direct way! So convert from one of the other forms!

$$
\begin{aligned}
& A_{0}=a_{0} \\
& A_{k}=\sqrt{a_{k}^{2}+b_{k}^{2}} \\
& \theta_{k}=\tan ^{-1}\left(\frac{-b_{k}}{a_{k}}\right)
\end{aligned}
$$

$$
\left.\begin{array}{l}
A_{0}=c_{0} \\
A_{k}=2\left|c_{k}\right| \\
\theta_{k}=\angle c_{k}
\end{array}\right\} k=1,2,3, \ldots
$$

- Recall... you can convert from any form into any other form using some simple equations!
- Thus... I tend to always find the c_{k} and then convert to other forms if needed.
- Why do I prefer to find the c_{k} ?
- Only one integral to actually do (although it is complex valued!)
- Integrals involving exponential are usually easier than for sinusoids!

Example: FS of Rectangular Pulse Train

$c_{k}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} x(t) e^{-j k \omega_{0} t} d t$
$=\frac{1}{2} \int_{0}^{2} x(t) e^{-j k \pi t} d t$
$=\frac{1}{2}\left[\int_{0}^{1} 1 e^{-j k \pi t} d t+\int_{1}^{2} 0 \times e^{-j k \pi t} d t\right]$
$c_{k}= \begin{cases}0, & k \text { even }, \neq 0 \\ \frac{-j}{k \pi}, & k \text { odd }\end{cases}$
$=\frac{1}{2} \int_{0}^{1} e^{-j k \pi t} d t$
$=\frac{1}{2}\left[\frac{1}{-j k \pi} e^{-j k \pi t}\right]_{0}^{1}<\begin{aligned} & \text { that case } \\ & \text { hava } \\ & \text { heparately! }\end{aligned}$

$c_{0}=\frac{1}{2} \int_{0}^{1} 1 e^{-j 0 \pi t} d t=\frac{1}{2} \int_{0}^{1} 1 d t$
$c_{0}=\frac{1}{2} \quad \begin{aligned} & \text { DC Level (also } \\ & \text { called DC Offset) }\end{aligned}$

So... we've found the exponential FS to be:

$$
x(t)=\cdots+\frac{-j}{-3 \pi} e^{-j 3 \omega_{0} t}+\frac{-j}{-1 \pi} e^{-j 1 \omega_{o} t}+\frac{1}{2}+\frac{-j}{1 \pi} e^{j 1 \omega_{o} t}+\frac{-j}{3 \pi} e^{j 3 \omega_{0} t}+\cdots
$$

$$
x(t)=\frac{1}{2}+\frac{2}{1 \pi} \sin \left(1 \omega_{o} t\right)+\frac{2}{3 \pi} \sin \left(3 \omega_{o} t\right)+\frac{2}{5 \pi} \sin \left(5 \omega_{o} t\right)+\cdots
$$

So... we've found the exponential FS to be:

$$
x(t)=\cdots+\frac{-j}{-3 \pi} e^{-j 3 \omega_{0} t}+\frac{-j}{-1 \pi} e^{-j 1 \omega_{0} t}+\frac{1}{2}+\frac{-j}{1 \pi} e^{j 1 \omega_{0} t}+\frac{-j}{3 \pi} e^{j 3 \omega_{0} t}+\cdots
$$

$$
A_{k}=\left\{\begin{array}{ll}
\frac{1}{2}, & k=0 \\
\frac{2}{k \pi}, & k \text { even }
\end{array} \quad \theta_{k}=\left\{\begin{array}{ll}
\mathrm{odd}
\end{array} \quad \begin{array}{ll}
\mathrm{N} / \mathrm{A}, & k=0 \\
-\frac{\pi}{2}, & k \text { even }
\end{array}\right.\right.
$$

$$
x(t)=\frac{1}{2}+\frac{2}{1 \pi} \cos \left(1 \omega_{o} t-\pi / 2\right)+\frac{2}{3 \pi} \cos \left(3 \omega_{o} t-\pi / 2\right)+\frac{2}{5 \pi} \cos \left(5 \omega_{o} t-\pi / 2\right)+\cdots
$$

Symmetry "Tricks" for Finding FS Coefficients

Even Symmetry: $x(-t)=x(t)$ ("flipping" around $t=0$ does nothing)

Noting that cosines have even symmetry and sines have odd symmetry it is not surprising that an even $x(t)$ needs only cosine components in the Sine-Cosine Form:

Odd Symmetry: $x(-t)=-x(t)$ ("flipping" around $t=0$ negates $x(t)$)

Noting that cosines have even symmetry and sines have odd symmetry it is not surprising that an ODD $x(t)$ needs only sine components in the Sine-Cosine Form:

Recall Example: FS of Rectangular Pulse Train

Sine-Cosine Form
$a_{k}=0$
$k \neq 0$
$\longrightarrow c_{k}=$ Are Imag
Amp.-Phase Form
Exp. Form $c_{\substack{ \\k \neq 0}}^{c_{k}=\text { Are Imag } \longrightarrow \theta_{k}= \pm \pi / 2}$

$$
\begin{aligned}
& a_{k}= \begin{cases}\frac{1}{2}, & k=0 \\
0, & k \neq 0\end{cases} \\
& b_{k}= \begin{cases}0, & k \text { even } \\
\frac{2}{k \pi}, & k \text { odd }\end{cases}
\end{aligned}
$$

$$
c_{k}= \begin{cases}0, & k \text { even }, \neq 0 \\ \frac{-j}{k \pi}, & k \text { odd }\end{cases}
$$

$$
\theta_{k}= \begin{cases}\mathrm{N} / \mathrm{A}, & k=0 \\ \mathrm{~N} / \mathrm{A}, & k \text { even } \\ -\frac{\pi}{2}, & k \text { odd }\end{cases}
$$

Numerically Finding FS Coefficients

Suppose you have a periodic signal and you want to find the FS coefficients... BUT it does not have a nice mathematical function that defines it (or it does but it is hard or impossible to do the integral)?

- We can numerically compute the integral!
- Remember that an integral finds the area under a curve...

$$
c_{0}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} x(t) d t
$$

Use samples to define trapezoids... Then find the areas of all the trapezoids!

So... we can use samples of the integrand to compute all the trapezoid areas and then use those to approximate the integral.

Fortunately, MATLAB has a command called "trapz" that does just this!

x is the vector that holds the signal samples over one period t is a vector that holds the time values spaced Ts seconds apart T is the period of the signal wo is the fundamental frequency in $\mathrm{rad} / \mathrm{sec}$

Example

On the command line:

```
>> T=4;
>> wo = 2*pi/T;
>> Ts = 0.2;
>> =0:0.2:T;
>> =(20/T)*t;
>> c_0 = (1/T)* trapz(x.*exp(-j*0*wo*t))*Ts;
>> c_1 = (1/T)* trapz(x.*exp(-j*1*wo*t))*Ts;
>> c_2 = (1/T)*\operatorname{trapz(x.*exp(-j*2*wo*t))*Ts;}
Etc...
```

Stored in an m-file script:

$$
\begin{aligned}
& \mathrm{T}=4 ; \quad \text { \% Specify period in seconds } \\
& \text { wo }=2 * \mathrm{pi} / \mathrm{T} ; \% \text { Compute fund. freq. in rad/sec } \\
& \mathrm{K}=10 ; \quad \% \text { specify largest } \mathrm{k} \text { value } \\
& \mathrm{Ts}=0.05 ; \quad \% \text { Specify sample spacing } \\
& \mathrm{t}=0: \mathrm{Ts}: \mathrm{T} ; \quad \text { \% Compute vector of time samples } \\
& x=(20 / T) * t \text {; } \% \text { Compute vector of signal samples } \\
& \text { for } \mathrm{k}=(-\mathrm{K}): \mathrm{K} \quad \% \text { loop through "all" coefficients } \\
& \mathrm{c}(\mathrm{k}+\mathrm{K}+1)=(1 / \mathrm{T}) * \operatorname{trapz}(\mathrm{x} . * \exp (-\mathrm{j} * \mathrm{k} * \mathrm{wo} * \mathrm{t}))^{* T s} \text {; } \\
& \text { end }
\end{aligned}
$$

Important Issues:

- How to choose sampling interval T_{s} ?
- How to set largest k value??

Choosing the Sampling Interval: \boldsymbol{T}_{s}

Once we set K (the largest k value) the FS we can compute is truncated

$$
x(t) \approx \sum_{k=-K}^{K} C_{k} e^{j k 2 \pi f_{0} t}
$$

$$
\begin{aligned}
& \omega_{o}=2 \pi f_{0} \\
& \Rightarrow f_{0}=1 / T
\end{aligned}
$$

So the highest frequency (in Hz) is $K f_{o}$
\ldots so to avoid aliasing we need sampling frequency $F_{s}>2 K f_{o}$

```
T=4; % Specify period in seconds
wo = 2*pi/T; % Compute fund. freq. in rad/sec
fo = 1/T; % Compute fund. freq. in Hz
K}=10;\quad% specify largest k valu
Fs}=4*\textrm{K}*\textrm{fo};%\mathrm{ Compute sampling rate (set here to twice the minimum value of 2Kfo)
Ts = 1/Fs; % Compute sample spacing
t=0:Ts:T; % Compute vector of time samples
x =(20/T)*t; % Compute vector of signal samples
for k = (-K):K % loop through "all" coefficients
    c(k+K+1) = (1/T)* trapz(x.*exp(-j*k*wo*t))*Ts;
end
```

Important Issue Remains:

- How to set largest k value??

We'll address this next and also in the next set of notes

Computing the Approximate Signal

Once we have the FS coefficients... can compute the truncated series:

$$
x(t) \approx \sum_{k=-K}^{K} c_{k} e^{j k 2 \pi f_{0} t}
$$

$$
\begin{aligned}
& \text { \% Assume we have these quantities found previously: c, wo, K, Ts } \\
& \mathrm{t}=0: \mathrm{Ts}: \mathrm{T} ; \% \text { computes over one period... but could compute over larger range } \\
& \text { Must be appropriate } \\
& \mathrm{x} \text { apprx }=\text { zeros(} \operatorname{size}(\mathrm{t})) ; \text { \% sets up vector of zeros as first "partial sum" } \\
& \text { for } \mathrm{k}=(-\mathrm{K}): \mathrm{K} \quad \% \text { loop through "all" coefficients } \\
& \mathrm{x} _ \text {apprx }=\mathrm{x} _ \text {apprx }+\mathrm{c}(\mathrm{k}+\mathrm{K}+1)^{*} \exp \left(\mathrm{j}^{*} \mathrm{k}^{*} \mathrm{wo}{ }^{*} \mathrm{t}\right) ; \quad \% \text { Add current term to partial sum } \\
& \text { end } \\
& \left.\mathrm{x} _ \text {apprx }=\text { real(} \mathrm{x} _ \text {apprx }\right) ; \quad \% \text { theory says imaginary parts cancel... so enforce this in case } \\
& \% \text { of numerical round-off issues }
\end{aligned}
$$

Improving the Approximate Signal by using More Terms

- Note that more terms gives a better approximation... but there is still "ringing" error at the discontinuities regardless of how many terms are included.
- This is called the Gibbs Phenomenon.

