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EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #8
• C-T Signals: Computing the FS Coefficients
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Q: How do we find the Exponential Form FS Coefficients?
A: Use this: (it can be proved but we won’t do that here!)
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only t0 = 0.

Integrate over 
any complete 
period

where:   T = fundamental period of x(t) (in seconds) 

0= fundamental frequency of x(t) (in rad/second)

= 2/T

t0 = any time point  (you pick t0 to ease calculations) 

k  all integers  (… –3, –2, –1, 0, 1, 2, 3, …) 

Comment: Note that for k = 0 this gives
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c0 is the “DC offset”, which is the 
time-average over one period

Analytically Finding FS Coefficients

Looks like we have to 
do this integral 
infinitely many 
times!!!  
But…Usually you 
can do the integral in 
terms of arbitrary k!



Q: How do we find the Sine-Cosine Form FS Coefficients?
A: Use these: (can be proved but we won’t do that here!)
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where:   T = fundamental period of x(t) (in seconds) 

0= fundamental frequency of x(t) (in rad/second)

= 2/T

t0 = any time point  (you pick t0 to ease calculations) 
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period
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Q: How do we find the Amplitude-Phase Form FS Coefficients?
A: No easy direct way!  So convert from one of the other forms!
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• Recall… you can convert from any form into any other form using some 
simple equations!

• Thus… I tend to always find the ck and then convert to other forms if 
needed.

• Why do I prefer to find the ck?  
− Only one integral to actually do (although it is complex valued!)
− Integrals involving exponential are usually easier than for sinusoids!
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Example: FS of Rectangular Pulse Train
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So… we’ve found the exponential FS to be:
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So… we’ve found the exponential FS to be:
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Symmetry “Tricks” for Finding FS Coefficients
Even Symmetry:  x(–t) = x(t)   (“flipping” around t = 0 does nothing)
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Noting that cosines have even symmetry and sines have odd symmetry it 
is not surprising that an even x(t) needs only cosine components in the 
Sine-Cosine Form: 

0kb  Are Realkc 

 

 
,3,2,1

2
1

2
1

00
















k
jbac

jbac

ac

kkk

kkk

k  

,3,2,1
2

00














k
c

cA

cA

kk

kk



Sine-Cosine Form Exp. Form Amp.-Phase Form
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Odd Symmetry:  x(–t) = -x(t)   (“flipping” around t = 0 negates x(t))
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Noting that cosines have even symmetry and sines have odd symmetry it 
is not surprising that an ODD x(t) needs only sine components in the 
Sine-Cosine Form: 
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Recall Example: FS of Rectangular Pulse Train
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Suppose you have a periodic signal and you want to find the FS 
coefficients… BUT it does not have a nice mathematical function that defines 
it (or it does but it is hard or impossible to do the integral)?
• We can numerically compute the integral! 
• Remember that an integral finds the area under a curve…

Numerically Finding FS Coefficients
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find the areas of all the trapezoids!
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“dot star” is needed 
for point-by-point 

multiply
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So… we can use samples of the integrand to compute all the trapezoid areas and 
then use those to approximate the integral.


 

Tt

t
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k dtetx

T
c 0

0

0)(1 

>> c_k  = (1/T)*trapz(x.*exp(-j*k*wo*t))*Ts 

trapz assumes “unit spacing”
… so you need this

x is the vector that holds the signal samples over one period
t is a vector that holds the time values spaced Ts seconds apart
T is the period of the signal
wo is the fundamental frequency in rad/sec

Fortunately, MATLAB has a command called “trapz” that does just this!
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Example )(tx

t

One Period

sT0 2 sT 3 sT 4 sT 5 sT ( 1) sN T… …

N points

20

T = 4 sec

>>  T = 4;
>>  wo = 2*pi/T;
>> Ts = 0.2;
>>  t = 0:0.2:T;
>>  x =(20/T)*t;
>>  c_0 = (1/T)*trapz(x.*exp(-j*0*wo*t))*Ts;
>>  c_1 = (1/T)*trapz(x.*exp(-j*1*wo*t))*Ts;
>>  c_2 = (1/T)*trapz(x.*exp(-j*2*wo*t))*Ts;

Etc…

T = 4;              % Specify period in seconds
wo = 2*pi/T;   % Compute fund. freq. in rad/sec
K = 10;            % specify largest k value
Ts = 0.05;          % Specify sample spacing 
t = 0:Ts:T;      % Compute vector of time samples
x =(20/T)*t;    % Compute vector of signal samples 
for k = (-K):K     % loop through “all” coefficients

c(k+K+1) = (1/T)*trapz(x.*exp(-j*k*wo*t))*Ts;
end

On the command line: Stored in an m-file script:

Important Issues:
• How to choose sampling interval Ts?
• How to set largest k value??

These 
Are 

Related!!
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Choosing the Sampling Interval: Ts
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T = 4;              % Specify period in seconds
wo = 2*pi/T;   % Compute fund. freq. in rad/sec
fo = 1/T;          % Compute fund. freq. in Hz
K = 10;            % specify largest k value
Fs = 4*K*fo;   % Compute sampling rate  (set here to twice the minimum value of 2Kfo)
Ts = 1/Fs;          % Compute sample spacing 
t = 0:Ts:T;      % Compute vector of time samples
x =(20/T)*t;    % Compute vector of signal samples 
for k = (-K):K     % loop through “all” coefficients

c(k+K+1) = (1/T)*trapz(x.*exp(-j*k*wo*t))*Ts;
end

Ends up being 0.1 
rather than 0.05 as 

specified above!

Important Issue Remains:
• How to set largest k value??

We’ll address this 
next and also in the 

next set of notes



15/16

Computing the Approximate Signal
02( )
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jk f t

k
k K

x t c e 
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 Once we have the FS coefficients… can compute the truncated series:

%  Assume we have these quantities found previously:   c, wo, K, Ts
t = 0:Ts:T;   % computes over one period… but could compute over larger range
x_apprx = zeros(size(t));   % sets up vector of zeros as first “partial sum”
for k = (-K):K     % loop through “all” coefficients

x_apprx = x_apprx + c(k+K+1)*exp(j*k*wo*t);    % Add current term to partial sum
end
x_apprx = real(x_apprx);    % theory says imaginary parts cancel… so enforce this in case 

% of numerical round-off issues
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Improving the Approximate Signal  by using More Terms

Red:    k =   -10:10
Green: k = -100:100 

• Note that more terms gives a better approximation… but there is 
still “ringing” error at the discontinuities regardless of how many 
terms are included.

• This is called the Gibbs Phenomenon.

Gibbs 
Phenomenon

Gibbs 
Phenomenon


