

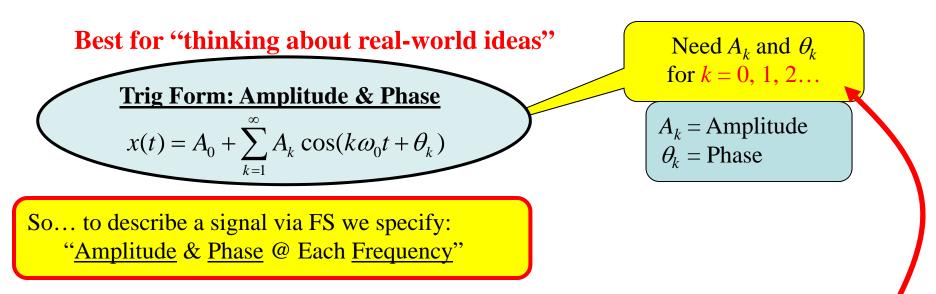
State University of New York

EECE 301 Signals & Systems Prof. Mark Fowler

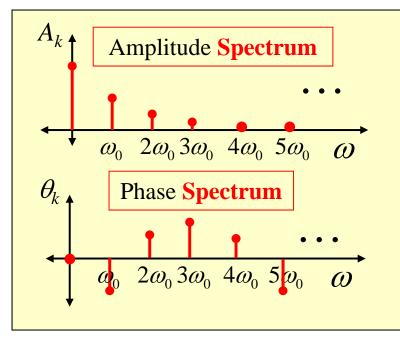
Note Set #9

• C-T Signals: FS Spectrum

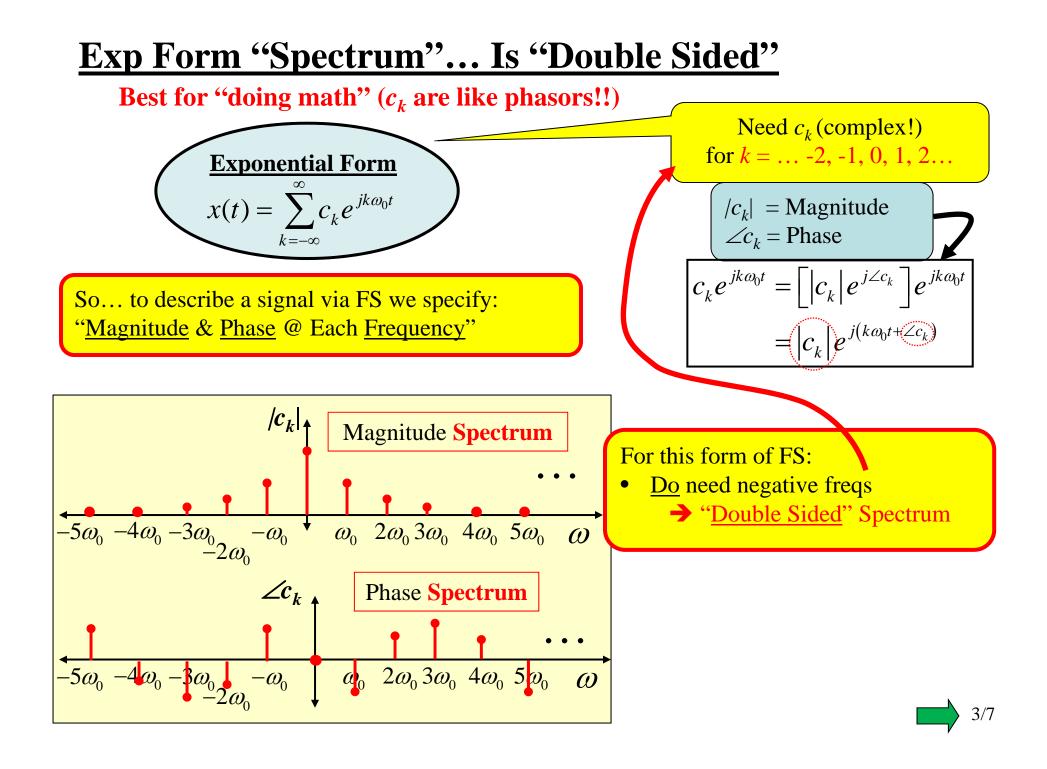
Trig Form "Spectrum"... Is "Single Sided"

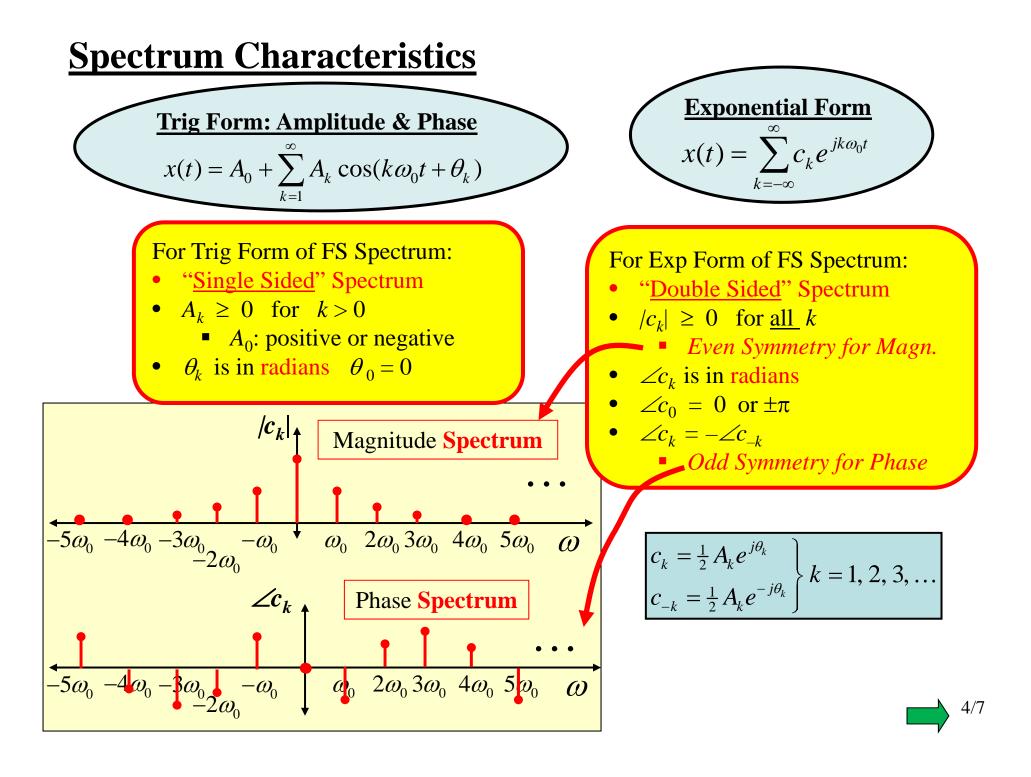


A good way to "see" the FS coefficients is by plotting them vs. frequency:



For this form of FS:
Do <u>not</u> need negative freqs
→ "<u>Single Sided</u>" Spectrum





Parseval's Theorem

We saw earlier how to compute the average power of a periodic signal if we are given its <u>time-domain</u> model: $1 e^{T+t}$

$$P = \frac{1}{T} \int_{t_0}^{T+t_0} x^2(t) dt$$

Q: Can we compute the average power from the frequency domain model

A: Parseval's Theorem says... Yes!

$$\{c_k\}, k = 0, \pm 1, \pm 2, \dots$$

Parseval's theorem says that the avg. power can be computed this way:

 $P = \sum_{k=-\infty}^{\infty} |c_k|^2$ $\frac{1}{T}$ $c_k \text{ are the Exp. Form FS coefficients}$ Left s

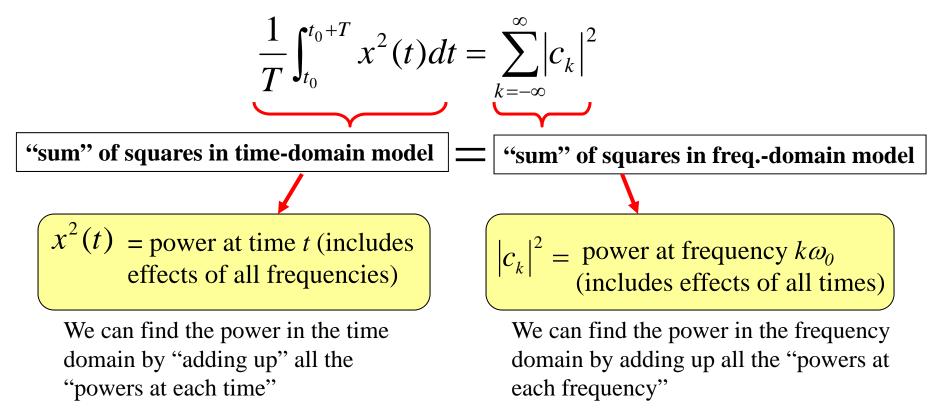
$$\frac{1}{T} \int_{t_0}^{t_0+T} x^2(t) dt = \sum_{k=-\infty}^{\infty} |c_k|^2$$

Left side is clearly finite for real-world signals...

Thus, the $|c_k|$ must decay fast enough as $k \rightarrow \pm \infty$

Tells us something about how the magnitude spectrum should look!

Interpreting Parseval's Theorem



One Use for Parseval's Theorem

When numerically computing the FS approximation... PT allows you to compute the power of the error term:

First find Avg Power:
$$P = \frac{1}{T} \int_{t_0}^{T+t_0} x^2(t) dt$$

Do analytically or numerically

Then find power of approximate using PT:

$$P_{approx} = \sum_{k=-K}^{K} |c_k|^2 = |c_0|^2 + 2\sum_{k=1}^{K} |c_k|^2$$

Then find power of error as
$$P_{error} = P - P_{approx}$$

It is easy to show that $P_{error} = 2\sum_{k=K+1}^{\infty} |c_k|^2$ Since the $|c_k|$ decay as $k \to \infty$ this shows that we can make P_{error} as small as we want by making *K* big enough!

$$-5\omega_0 -4\omega_0 -3\omega_0 -2\omega_0 -\omega_0 -\omega_0 -2\omega_0 3\omega_0 4\omega_0 5\omega_0 \omega$$

7/7