State University of New York

EECE 301
 Signals \& Systems Prof. Mark Fowler

Note Set \#10

- C-T Signals: Circuits with Periodic Sources

Solving Circuits with Periodic Sources

FS makes it easy to find the response of an RLC circuit to a periodic source!

- Use the FS to convert the source into a sum of sinusoids
- Do phasor analysis for each of the input sinusoids (think superposition!)
- Add up the sinusoidal responses to get the output signal

Example: In electronics you have seen (or will see) how to use diodes and an RC filter circuit to create a DC power supply:

Obviously we can't do this for all infinitely many terms.. but we can do it for enough... and if we do it numerically it is not hard!

Progression of Ideas

For this scenario we can find the c_{k} analytically...
The equation for the FS coefficients is: $\quad c_{k}=\frac{1}{T} \int_{0}^{T} x(t) e^{-j k \omega_{0} t} d t \quad \omega_{0}=\frac{2 \pi}{T}$

Change of variable: $\tau=\frac{\pi}{T} t \quad \square c_{k}=\frac{A}{\pi} \int_{0}^{\pi} \sin (\tau) e^{-j k 2 \tau} d \tau$
Use a Table of Integrals and do some algebra \& trig to get:

$$
c_{k}=\frac{2 A}{\pi\left(1-4 k^{2}\right)}
$$

FS coefficient for full-wave rectified sine wave of amplitude A

So the two-sided spectrum after the rectifier:

Now we can us Parseval's Theorem to determine how many terms we need in our approximation for the source...

$$
\begin{aligned}
& P=\frac{1}{T} \int_{0}^{T} A^{2} \sin ^{2}\left(\frac{\pi}{T} t\right) d t=\frac{A^{2}}{\pi} \int_{0}^{\pi} \sin ^{2}(\tau) d \tau=\frac{A^{2}}{\pi} \frac{\pi}{2}=\frac{A^{2}}{2} \\
& P_{\text {approx }}=\sum_{k=-K}^{K}\left|c_{k}\right|^{2}=\sum_{k=-K}^{K}\left|\frac{2 A}{\pi\left(1-4 k^{2}\right)}\right|^{2}=\frac{4 A^{2}}{\pi^{2}} \sum_{k=-K}^{K}\left|\frac{1}{\left(1-4 k^{2}\right)}\right|^{2}
\end{aligned}
$$

We can look at the ratio of these two as a good measure:

$$
\frac{P_{\text {approx }}}{P}=\frac{\frac{4 A^{2}}{\pi^{2}} \sum_{k=-K}^{K}\left|\frac{1}{\left(1-4 k^{2}\right)}\right|^{2}}{\frac{A^{2}}{2}}=\frac{8}{\pi^{2}} \sum_{k=-K}^{K}\left|\frac{1}{\left(1-4 k^{2}\right)}\right|^{2}
$$

Numerically evaluating this for different K values shows that $K=10$ retains more than 99.99% of the power. So we can use that value.

So... our numerical approach is now this:

1. Numerically evaluate c_{k} for $\mathrm{k}=-10$ to 10
2. Numerically convert them into the d_{k} phasors
3. Convert the phasors into corresponding FS

$$
\begin{aligned}
& c_{k}=\frac{2 A}{\pi\left(1-4 k^{2}\right)} \\
& d_{k}=\left[\frac{1}{1+j k \omega_{o} R C}\right] c_{k}
\end{aligned}
$$ sinusoidal terms and add them up

We'll do this for:

- $A=10$ volts

- $R=100 \Omega$
- $C=1000 \mu \mathrm{~F}$
wo $=240^{*} \mathrm{pi} ; \%$ Set fund freq
fo=wo/(2*pi); \% convert to Hz
$\mathrm{T}=2^{*} \mathrm{pi} / \mathrm{wo}$; \% compute period
$\mathrm{K}=10$; \% Set number of terms
$\mathrm{kv}=(-\mathrm{K}): \mathrm{K}$; \% set vector of k indices
$\mathrm{A}=10$; \% set amplitude of input
$\mathrm{R}=100$; \% set resistance
C=1000e-6; \% set capacitance
$\mathrm{ck}=\left(2^{*} \mathrm{~A} / \mathrm{pi}\right) . /\left(1-4^{*}(\mathrm{kv} . \wedge 2)\right) ; \%$ compute the input FS coefficents
$\mathrm{dk}=\left(1 . /\left(1+\mathrm{j} * \mathrm{kv}^{*} \mathrm{wo}{ }^{*} \mathrm{R} * \mathrm{C}\right)\right) . * \mathrm{ck} ; \%$ compute the output FS coefficents
Fs $=4 * \mathrm{~K} * \mathrm{fo} ; \quad \%$ Compute sampling rate (set here to twice the minimum value of 2 Kfo)
$\mathrm{Ts}=1 / \mathrm{Fs} ; \quad \%$ Compute sample spacing
$\mathrm{t}=\left(-3^{*} \mathrm{~T}\right): \mathrm{Ts}:(3 * \mathrm{~T})$;
x_apprx = zeros(size(t)); \% sets up vector of zeros as first "partial sum"
for $\mathrm{k}=(-\mathrm{K}): \mathrm{K} \quad \%$ loop through "all" coefficients
x_apprx $=x _a p p r x+c k(k+K+1) * \exp \left(j^{*} k^{*} w^{*}{ }^{*} t\right) ; \quad \%$ Add current term to partial sum
end
x_apprx = real(x_apprx);
y_apprx = zeros(size(t)); \% sets up vector of zeros as first "partial sum"
for $\mathrm{k}=(-\mathrm{K}): \mathrm{K} \quad$ \% loop through "all" coefficients
y_apprx $=y _$apprx $+\mathrm{dk}(\mathrm{k}+\mathrm{K}+1)^{*} \exp \left(\mathrm{j}^{*} \mathrm{k}^{*} \mathrm{wo} \mathrm{o}^{*} \mathrm{t}\right) ; \quad \%$ Add current term to partial sum
end
y_apprx $=$ real(y_apprx); \% theory says imaginary parts cancel.. . so enforce this in case $\%$ of numerical round-off issues
figure(1); plot(t,x_apprx,'r',t,y_apprx,'g--'); xlabel('time (seconds)'); ylabel('Input and Output (volts)'); grid figure(2); subplot(2,1,1); stem(kv,abs(ck)); subplot(2,1,2); stem(kv,abs(dk))

Big Idea: "Frequency Response"

How to find the Frequency Response of a Circuit...

- Assume arbitrary phasor X with frequency ω
- Analyze circuit to find output phasor Y
- It will always take this multiplicative form: $Y=H(\omega) X$
- All impedances are evaluated at the arbitrary frequency ω
- The frequency response function $H(\omega)$ is the thing that multiplies X

