

State University of New York

EECE 301 Signals & Systems Prof. Mark Fowler

Note Set #10

• C-T Signals: Circuits with Periodic Sources

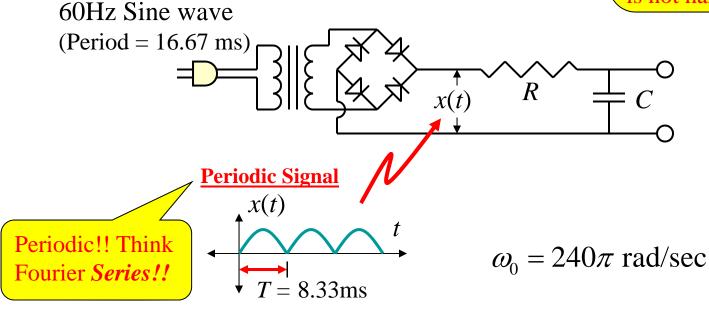
Solving Circuits with Periodic Sources

FS makes it easy to find the response of an RLC circuit to a periodic source!

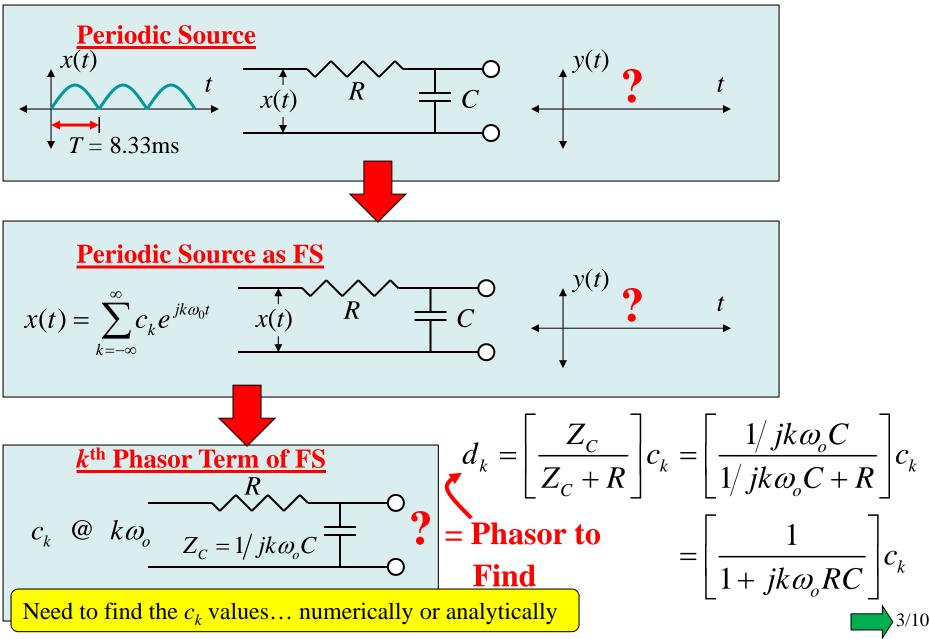
- Use the FS to convert the source into a sum of sinusoids
- Do phasor analysis <u>for each</u> of the input sinusoids (think superposition!)
- Add up the sinusoidal responses to get the output signal

Example: In electronics you have seen (or will see) how to use diodes and an RC filter circuit to create a DC power supply:

Obviously we can't do this for all infinitely many terms... but we can do it for enough... and if we do it numerically it is not hard!



Progression of Ideas



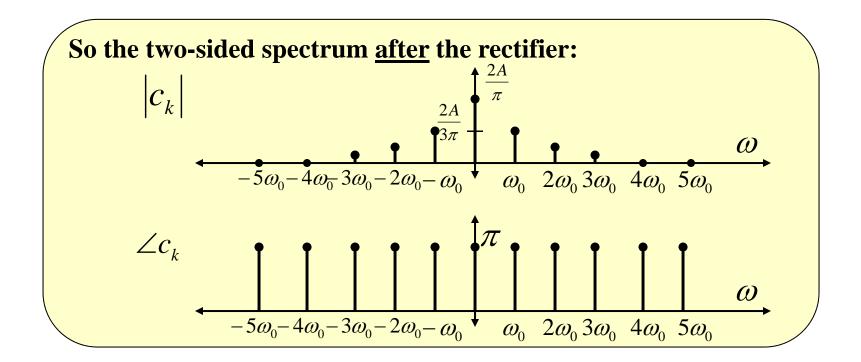
For this scenario we *can* find the c_k analytically...

The equation for the FS coefficients is:
$$c_k = \frac{1}{T} \int_0^T x(t) e^{-jk\omega_0 t} dt$$
 $\omega_0 = \frac{2\pi}{T}$
Over this interval:
 $x(t) = A \sin\left(\frac{\pi}{T}t\right) 0 \le t \le T$
 $c_k = \frac{1}{T} \int_0^T A \sin\left(\frac{\pi}{T}t\right) e^{-jk\left(\frac{2\pi}{T}\right)t} dt$ Now apply Calc I ideas
to evaluate....
Change of variable: $\tau = \frac{\pi}{T}t$ $c_k = \frac{A}{\pi} \int_0^\pi \sin(\tau) e^{-jk2\tau} d\tau$

Use a Table of Integrals and do some algebra & trig to get:

$$c_k = \frac{2A}{\pi(1-4k^2)}$$
 FS coefficient for full-wave rectified sine wave of amplitude A

4/10



Now we can us Parseval's Theorem to determine how many terms we need in our approximation for the source...

$$P = \frac{1}{T} \int_0^T A^2 \sin^2\left(\frac{\pi}{T}t\right) dt = \frac{A^2}{\pi} \int_0^\pi \sin^2\left(\tau\right) d\tau = \frac{A^2}{\pi} \frac{\pi}{2} = \frac{A^2}{2}$$
$$P_{approx} = \sum_{k=-K}^K |c_k|^2 = \sum_{k=-K}^K \left|\frac{2A}{\pi(1-4k^2)}\right|^2 = \frac{4A^2}{\pi^2} \sum_{k=-K}^K \left|\frac{1}{(1-4k^2)}\right|^2$$

We can look at the ratio of these two as a good measure:

$$\frac{P_{approx}}{P} = \frac{\frac{4A^2}{\pi^2} \sum_{k=-K}^{K} \left| \frac{1}{(1-4k^2)} \right|^2}{\frac{A^2}{2}} = \frac{8}{\pi^2} \sum_{k=-K}^{K} \left| \frac{1}{(1-4k^2)} \right|^2$$

Numerically evaluating this for different *K* values shows that K = 10 retains more than 99.99% of the power. So we can use that value.

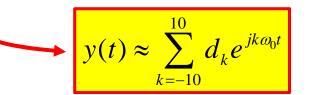
So... our numerical approach is now this:

- 1. Numerically evaluate c_k for k = -10 to 10 -
- 2. Numerically convert them into the d_k phasors
- 3. Convert the phasors into corresponding FS sinusoidal terms and add them up

We'll do this for:

- A = 10 volts
- $R = 100 \Omega$
- $C = 1000 \ \mu F$

 $c_k = \frac{2A}{\pi(1-4k^2)}$ $d_k = \left[\frac{1}{1+jk\omega_o RC}\right]c_k$



wo=240*pi; % Set fund freq
fo=wo/(2*pi); % convert to Hz
T = 2*pi/wo; % compute period
K=10; % Set number of terms
kv=(-K):K; % set vector of k indices
A=10; % set amplitude of input
R=100; % set resistance
C=1000e-6; % set capacitance

ck=(2*A/pi)./(1-4*(kv.^2)); % compute the input FS coefficients

dk=(1./(1+j*kv*wo*R*C)).*ck; % compute the output FS coefficients

Fs = 4*K*fo; % Compute sampling rate (set here to twice the minimum value of 2Kfo) Ts = 1/Fs; % Compute sample spacing t = (-3*T):Ts:(3*T); $x_apprx = zeros(size(t)); % sets up vector of zeros as first "partial sum"$ for k = (-K):K % loop through "all" coefficients $x_apprx = x_apprx + ck(k+K+1)*exp(j*k*wo*t); % Add current term to partial sum end$

x_apprx = real(x_apprx);

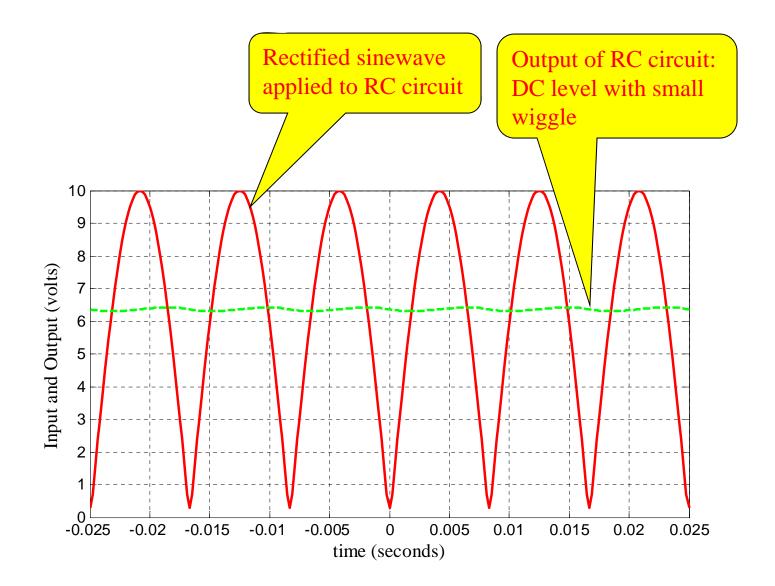
y_apprx = zeros(size(t)); % sets up vector of zeros as first "partial sum"

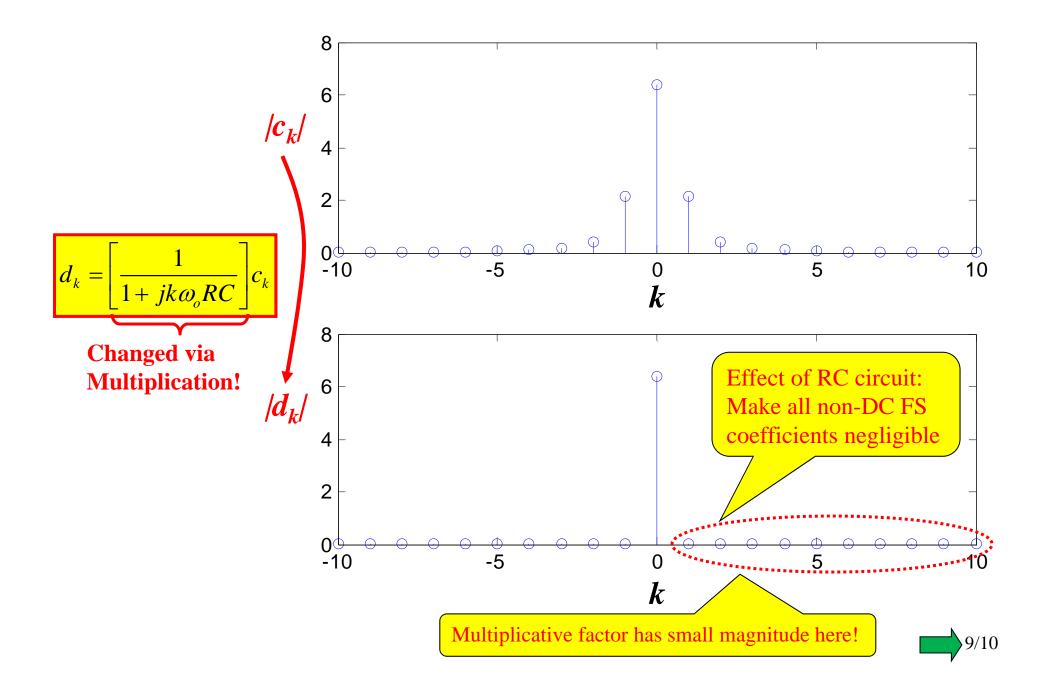
for k = (-K):K % loop through "all" coefficients

 $y_apprx = y_apprx + dk(k+K+1)*exp(j*k*wo*t);$ % Add current term to partial sum end

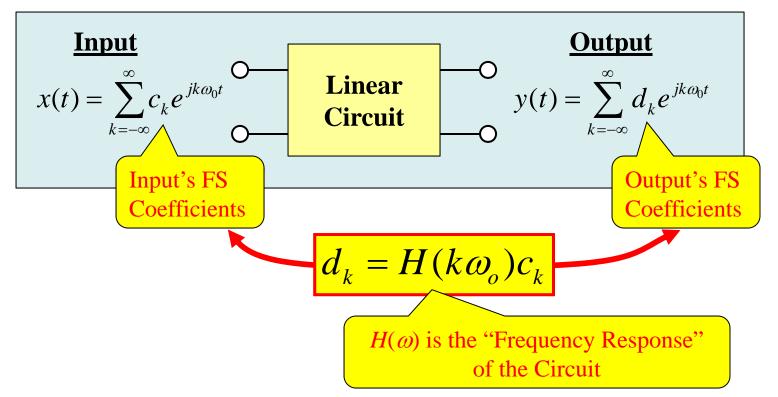
y_apprx = real(y_apprx); % theory says imaginary parts cancel... so enforce this in case % of numerical round-off issues

figure(1); plot(t,x_apprx,'r',t,y_apprx,'g--'); xlabel('time (seconds)'); ylabel('Input and Output (volts)'); grid figure(2); subplot(2,1,1); stem(kv,abs(ck)); subplot(2,1,2); stem(kv,abs(dk))





Big Idea: "Frequency Response"



How to find the Frequency Response of a Circuit...

- Assume arbitrary phasor X with frequency ω
- Analyze circuit to find output phasor *Y*
 - It will always take this multiplicative form: $Y = H(\omega) X$
 - All impedances are evaluated at the arbitrary frequency ω
- The frequency response function $H(\omega)$ is the thing that multiplies X