

State University of New York

EECE 301 Signals & Systems Prof. Mark Fowler

<u>Note Set #11</u>

• C-T Signals: Fourier Transform Concept (for <u>Non</u>-Periodic Signals)

Intro to Fourier Transform

<u>Recall</u>: Fourier <u>Series</u> represents a <u>periodic</u> signal as a <u>sum</u> of <u>sinusoids</u> or <u>complex</u> sinusoids $e^{jk\omega_0 t}$ <u>Note</u>: Because the FS uses <u>"harmonically related"</u> frequencies $k\omega_0$, it can <u>only</u> create <u>periodic</u> signals

<u>Q:</u> Can we modify the FS idea to handle <u>non</u>-periodic signals?

A: Yes!!
What about
$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j\omega_k t}$$
?
With arbitrary discrete frequencies...
NOT harmonically related
This will give some non-periodic signals but
not all signals of interest!!

The problem with this is that it cannot include <u>all</u> possible frequencies!

No matter how close we try to choose the discrete frequencies ω_k there are always some left out of the sum!!!

We need some way to include ALL frequencies!!

Okay... given x(t) how do we get $X(\omega)$?

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

Called the
"Fourier Transform"
of $x(t)$

Comparison of FT and FS

Fourier Series: Used for <u>periodic</u> signals

Fourier Transform: Used for <u>non-periodic</u> signals (although we will see later that it can also be used for periodic signals)

	Synthesis	Analysis
Fourier Series	$x(t) = \sum_{n=-\infty}^{\infty} c_k e^{jk\omega_0 t}$	$c_{k} = \frac{1}{T} \int_{t_{0}}^{t_{0}+T} x(t) e^{-jk\omega_{0}t} dt$
	Fourier Series	Fourier Coefficients
Fourier Transform	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$	$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$
	Inverse Fourier Transform	Fourier Transform

FS coefficients c_k are a <u>complex-valued</u> function of integer k **FT** $X(\omega)$ is a <u>complex-valued</u> function of the variable $\omega \in (-\infty, \infty)$

4/14

Synthesis Viewpoints:

<u>FS:</u> $x(t) = \sum_{n=-\infty}^{\infty} c_k e^{jk\omega_0 t}$

 $|c_k|$ shows how much there is of the signal at frequency $k\omega_0$

 $\angle c_k$ shows how much phase shift is needed at frequency $k\omega_0$

We need two plots to show these

FT:
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

 $|X(\omega)|$ shows how much there is in the signal at frequency ω

 $\angle X(\omega)$ shows how much phase shift is needed at frequency ω

We need two plots to show these

<u>Analogy</u>: Looking at $X(\omega)$ is "like" looking at an x-ray of the signal- in the sense that an x-ray lets you see what is inside the object... shows what stuff it is made from.

In this sense: $X(\omega)$ shows what is "inside" the signal – it shows how much of each complex sinusoid is "inside" the signal

	There are some advanced mathematical issues that can be hurled at these comments we'll not	
$X(\omega)$ completely determines $x(t)$		/14

Example: FT of a Rectangular pulse

 τ = pulse width

Solution: (Here we'll directly do the integral... but later we'll use the "FT Table")

Note that

$$p_{\tau}(t) = \begin{cases} 1, & -\frac{\tau}{2} \le t \le \frac{\tau}{2} \\ 0, & otherwise \end{cases}$$

Now apply the definition of the FT:

poply the definition of the FT:

$$P_{\tau}(\omega) = \int_{-\infty}^{\infty} p_{\tau}(t)e^{-j\omega t} dt = \int_{-\tau/2}^{\tau/2} e^{-j\omega t} dt$$
Limit integral to where $p_{\tau}(t)$ is non-zero... and use the fact that it is 1 over that region

$$= \frac{-1}{j\omega} \left[e^{-j\omega t} \right]_{-\frac{\tau}{2}}^{\frac{\tau}{2}} = \frac{2}{\omega} \left[\frac{e^{j\frac{\omega \tau}{2}} - e^{-j\frac{\omega \tau}{2}}}{j2} \right]$$
Artificially inserted 2 in numerator and denominator

$$= \sin \left(\frac{\omega \tau}{2} \right)$$
Use Euler's Formula

$$= \sin \left(\frac{\omega \tau}{2} \right)$$
Use Euler's Formula
sin goes up and down between -1 and 1
 $1/\omega$ decays down as $|\omega|$ gets big... this causes the overall

big... this causes the overall function to decay down

For <u>this</u> case the FT is real valued so we can plot it using a single plot (shown in solid blue here):

Now... let's think about how to make a magnitude/phase plot...

Even though this FT is real-valued we can still plot it using magnitude

and phase plots:

We can view any real number as a complex number that has zero as its imaginary part

Definition of "Sinc" Function

The result we just found had this mathematical form: $P_{\tau}(\omega) = -$

This structure shows up enough that we define a special function to capture it:

With a little manipulation we can re-write the FT result for a pulse in terms of the sinc function:

FT of Rect. Pulse = Sinc Function

