State University of New York

EECE 301
 Signals \& Systems Prof. Mark Fowler

Note Set \#11

- C-T Signals: Fourier Transform Concept (for Non-Periodic Signals)

Intro to Fourier Transform

Recall: Fourier Series represents a periodic signal as a sum of sinusoids

$$
\text { or complex sinusoids } \quad e^{j k \omega_{0} t}
$$

Note: Because the FS uses "harmonically related" frequencies $k \omega_{0}$, it can only create periodic signals

Q: Can we modify the FS idea to handle non-periodic signals?
A: Yes!!
What about $x(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j \omega_{\omega_{k} t}}$? $\quad \begin{gathered}\text { With } \begin{array}{c}\text { arbitrary discrete frequencies... } \\ \text { NOT harmonically related }\end{array}\end{gathered}$
This will give some non-periodic signals but not all signals of interest!!

The problem with this is that it cannot include all possible frequencies!
No matter how close we try to choose the discrete frequencies ω_{k} there are always some left out of the sum!!!

We need some way to include ALL frequencies!!

How about:

Called the "Fourier Integral" also, more commonly, called the
"Inverse Fourier Transform"

Yes... this will work for any practical non-periodic signal!!

Okay... given $x(t)$ how do we get $X(\omega)$?

$$
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \quad \begin{gathered}
\text { Called the } \\
\begin{array}{c}
\text { Fourier Transform" } \\
\text { of } x(t)
\end{array}
\end{gathered}
$$

Note: $X(\omega)$ is complex-valued function of $\omega \in(-\infty, \infty)$

Comparison of FT and FS

Fourier Series: Used for periodic signals
Fourier Transform: Used for non-periodic signals (although we will see later that it can also be used for periodic signals)

	Synthesis	Analysis				
Fourier Series	$x(t)=\sum_{n=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t}$					
Fourier Series			$\quad c_{k}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} x(t) e^{-j k \omega_{0} t} d t\left	\begin{array}{c}\text { Fourier Coefficients }\end{array}\right	$	Fourier
:---						
Transform		$x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega$				
:---:						
Inverse Fourier Transform		$X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$				
:---:						
Fourier Transform						

FS coefficients c_{k} are a complex-valued function of integer k
FT $X(\omega)$ is a complex-valued function of the variable $\omega \in(-\infty, \infty)$

Synthesis Viewpoints:

FS: $\quad x(t)=\sum_{n=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t}$
$\left|c_{k}\right|$ shows how much there is of the signal at frequency $k \omega_{0}$
$\angle c_{k}$ shows how much phase shift is needed at frequency $k \omega_{0}$
We need two plots to show these
FT: $\quad x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega$
$|X(\omega)|$ shows how much there is in the signal at frequency ω
$\angle X(\omega)$ shows how much phase shift is needed at frequency ω

We need two plots to show these

Fourier Transform Viewpoint

View FT as a transformation into a new "domain"

$x(t)$ is the "time domain" description of the signal
$X(\omega)$ is the "frequency domain" description of the signal

Alternate Notations

1. $x(t) \leftrightarrow X(\omega)$
2. $X(\omega)=\mathfrak{F}\{x(t)\}$
$\Rightarrow \mathscr{F}\}$ is an "operator on"
$x(t)$ to give $X(\omega)$
3. $x(t)=\mathscr{F}^{-1}\{X(\omega)\}$
$\Rightarrow \mathscr{F}^{-1}\{ \}$ is an "operator on"
$\quad X(\omega)$ to give $x(t)$

Analogy: Looking at $X(\omega)$ is "like" looking at an x-ray of the signal- in the sense that an x-ray lets you see what is inside the object... shows what stuff it is made from.

In this sense: $X(\omega)$ shows what is "inside" the signal - it shows how much of each complex sinusoid is "inside" the signal

Note: $x(t)$ completely determines $X(\omega)$
$X(\omega)$ completely determines $x(t)$

There are some advanced mathematical issues that can be hurled at these comments... we'll not worry about them $\quad \square 6414$

Example: FT of a Rectangular pulse

$\tau=$ pulse width

Given: a rectangular pulse signal $p_{\tau}(t)$

Find: $P_{\tau}(\omega) \ldots$ the FT of $p_{\tau}(t)$

Note the Notational Convention: lower-
Recall: we use this symbol to indicate a rectangular pulse with width τ case for time signal and corresponding upper-case for its FT

Solution: (Here we'll directly do the integral... but later we'll use the "FT Table")
Note that

$$
p_{\tau}(t)=\left\{\begin{array}{lc}
1, & -\frac{\tau}{2} \leq t \leq \frac{\tau}{2} \\
0, & \text { otherwise }
\end{array}\right.
$$

Now apply the definition of the FT:

$$
\begin{aligned}
& P_{\tau}(\omega)=\int_{-\infty}^{\infty} p_{\tau}(t) e^{-j \omega t} d t=\int_{-\tau / 2}^{\tau / 2} e^{-j \omega t} d t \\
& \text { where } p_{\tau}(t) \text { is non- } \\
& \text { zero... and use the } \\
& \text { fact that it is } 1 \text { over } \\
& \text { that region }
\end{aligned}
$$

Limit integral to

For this case the FT is real valued so we can plot it using a single plot (shown in solid blue here):

$$
P_{\tau}(\omega)=\frac{2 \sin \left(\frac{\omega \tau}{2}\right)}{\omega}
$$

Now... let's think about how to make a magnitude/phase plot...

Even though this FT is real-valued we can still plot it using magnitude and phase plots:

We can view any real number as a complex number that has zero as its imaginary part

Applying these Ideas to the Real-valued FT $\boldsymbol{P}_{\tau}(\omega)$

Here I have chosen $-\pi$ to display odd symmetry

Definition of "Sinc" Function

The result we just found had this mathematical form: $\quad P_{\tau}(\omega)=\frac{(2)}{\omega}$
This structure shows up enough that we define a special function to capture it:

$$
\text { Define: } \operatorname{sinc}(x)=\frac{\sin (\pi x)}{\pi x}
$$

With a little manipulation we can re-write the FT result for a pulse in terms of the sinc function:

Recall:

$$
\begin{aligned}
\operatorname{sinc}(x)= & \frac{\sin (\pi x)}{\pi x} \\
P_{\tau}(\omega) & =\frac{2 \sin \left(\frac{\omega \tau}{2}\right)}{\omega}=\frac{2 \sin \left(\frac{\pi}{\pi} \frac{\omega \tau}{2}\right)}{\omega}=\frac{2 \sin \left(\pi \frac{\omega \tau}{2 \pi}\right)}{\begin{array}{l}
\text { Need } \pi \text { times } \\
\text { something... }
\end{array}} \begin{array}{l}
\text { Now we need the } \\
\text { same thing down } \\
\text { here as inside the } \\
\text { sine... }
\end{array} \\
& =\frac{\pi / 2 \pi}{2 \pi} \frac{\pi \frac{\tau}{2 \pi}}{2 \pi}=\tau \frac{\sin \left(\pi \frac{\omega \tau}{2 \pi}\right)}{\pi \frac{\omega \tau}{2 \pi}}=\tau \operatorname{sinc}\left(\frac{\omega \tau}{2 \pi}\right)
\end{aligned}
$$

FT of Rect. Pulse = Sinc Function

