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Fourier Analysis of D-T Signals

We now develop “Fourier ideas” for D-T signals like we did for C-T signals:

— Define a D-T FT (DTFT) for D-T signals and see that it works pretty much like the
FT for C-T signals (CTFT)

But... we also do something we can’t do for CTFT-based ideas:

— Develop a computer-processing version of the DTFT... called the Discrete Fourier

Transform (DFT) that will allow you to use the computer to numerically compute a
“view” of the DTFT

— But to make this DFT useful we’ll need to understand the relationships between the
DFT, the DTFT, and the CTFT!
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Recall: Sampling Analysis

As long as F, > 2B then we can clearly “see”...
aview of X(f)in X(f)

But we “did” this using a FT of a signal inside the DAC...
Is there some other way to do this by using the samples?
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Motivation for D-T Fourier Transform (DTFT)
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e We know that if sampling has been done “perfectly” that:
— X (f) shows the original signal’s FT X( f) with no aliasing

— But... that is only something that helps us “conceptually” but not
really “numerically”...

« So that raises this question:

— Since X(t) is completely determined by x[n]... can we use those
samples to actually compute X (f) ????
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Recall Fourier Transform of X(t)

X(t) = x(t) ié(t —nT)

N=—0o0

— X(1)3r (1)

FSOV‘r(t)/

X(t) =% > x(t)e k!
k=—o0

FT & Mod. Propl

X(f)== 3 X(f +kF)

Tells what X (@) looks like!
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Take An Alternate Path to the DTFT!

N=—0o0

X(t) = x(t) ié’(t —nT) = x(t)5r (1)

FS of 8,(t)

1 < jk2aF
X()== ) x(t)el s
(t) T D x(1)

k=—00

FT & Mod. Prop

P~

X () = Ti iX(aH K27F.)

Tells what X () looks like!

\
X(t)= > x[n]s(t-nT)
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Tells how to compute )Z(a))!




Re-Define to Get The DTFT!

Q is called “D-T Frequency”

Q = wT: (rad/sec) x (sec/sample) = rad/sample

X (w) and X () arereally the same thing... o rad/sec

just " plotted" w.r.t.a different unit Q):  rad/sample
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DTFT X(Q) shows... If sampling was
~ done right!!!
X(f) which shows...

“CTFT” X(f)
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Only Need to Look Here!!!
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Physical Relationship of DTFT
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Motivating D-T System Analysis using DTFT
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