

State University of New York

EECE 301 Signals & Systems Prof. Mark Fowler

<u>Note Set #18</u>

• D-T Signals: Frequency-Domain Analysis

Fourier Analysis of D-T Signals

We now develop "Fourier ideas" for D-T signals like we did for C-T signals:

– Define a D-T FT (DTFT) for D-T signals and see that it works pretty much like the FT for C-T signals (CTFT)

But... we also do something we can't do for CTFT-based ideas:

- Develop a <u>computer-processing version</u> of the DTFT... called the Discrete Fourier Transform (DFT) that will allow you to use the computer to numerically compute a "view" of the DTFT

– But to make this DFT useful we'll need to understand the relationships between the DFT, the DTFT, and the CTFT!

But we "did" this using a FT of a signal inside the DAC... Is there some other way to do this by <u>using the *samples*</u>?

Motivation for D-T Fourier Transform (DTFT)

- We know that if sampling has been done "perfectly" that:
 - $\tilde{X}(f)$ shows the original signal's FT X(f) with no aliasing
 - But... that is only something that helps us "conceptually" but not really "numerically"...
- So that raises this question:
 - Since $\tilde{x}(t)$ is completely determined by x[n]... can we use those samples to actually <u>compute</u> $\tilde{X}(f)$????

 $\Omega = \omega T$: (rad/sec) × (sec/sample) = rad/sample

Motivating D-T System Analysis using **DTFT**

10/10