State University of New York

EECE 301
 Signals \& Systems Prof. Mark Fowler

Note Set \#19

- D-T Signals: DTFT Details

DTFT Details

What we saw: That the conceptual CTFT inside the DAC can also be computed from the samples... we called that thing the DTFT.

Define the DTFT:

$X(\Omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \frac{\Omega n}{n}}$
DT frequency in rad/sample

Compare to CTFT: $X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$
Very similar structure... so we should expect similar properties!!!

Example of Analytically Computing the DTFT

	With your brain, not a computer	$x[n]= \begin{cases}0, & n<0 \\ a^{n}, & 0 \leq n \leq q \\ 0, & n>q\end{cases}$
$\begin{gathered} -3-2-1 \downarrow 1 \underset{q}{2}=3456 \\ q 4 \end{gathered}$	If $\|a\|<1, \quad x[n]$ decays If $\|a\|>1, x[n]$ "explodes If $a<0, \quad x[n]$ oscillates	

Given this signal model, find the DTFT.

By definition: $X(\Omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n}=\sum_{n=0}^{q} a^{n} e^{-j \Omega n}=\sum_{n=0}^{q}\left(a e^{-j \Omega}\right)^{n}$
General Form for

$$
X(\Omega)=\frac{1-\left(a e^{-j \Omega}\right)^{a+1}}{1-a e^{-j \Omega}}
$$

$$
\sum_{n=q_{1}}^{q_{2}} r^{n}=\frac{r^{q_{1}}-r^{q_{2}+1}}{1-r}
$$

Characteristics of DTFT

1.Periodicity of $X(\Omega)$
$X(\Omega)$ is a periodic function of Ω with period of 2π

$$
\begin{aligned}
& \Rightarrow X(\Omega+2 \pi)=X(\Omega) \quad \text { Recall pictures in notes of "DTFT Intro": } \\
& \Rightarrow|X(\Omega)| \text { is periodic with period } 2 \pi
\end{aligned} \begin{gathered}
\text { Note: the CTFT does not } \\
\text { have this property }
\end{gathered}
$$

2. $X(\Omega)$ is complex valued (in general)

$$
X(\Omega)=\sum_{n} x[n] \underbrace{e^{-j \Omega n}}_{\pi} \quad \text { complex }
$$

Usually think of $X(\Omega)$ in polar form:

$$
X(\Omega)=\underbrace{|X(\Omega)|}_{\text {magnitude }} e^{j \not \underbrace{}_{\text {phase }} \quad(\Omega)} \quad \begin{gathered}
\text { Same } \\
\text { as } \\
\text { CTFT }
\end{gathered}
$$

If $x[n]$ is real-valued, then:

$$
\begin{array}{ll}
|X(-\Omega)|=|X(\Omega)| & \text { (even symmetry) } \\
\angle X(-\Omega)=-\angle X(\Omega) & \text { (odd symmetry) }
\end{array}
$$

Same as CTFT

Inverse DTFT

Q: Given $X(\Omega)$ can we find the corresponding $x[n]$?
A: Yes!!

$$
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\Omega) e^{j n \Omega} d \Omega
$$

We can integrate instead over any interval of length 2π
...because the
DTFT is periodic with period 2π

Generalized DTFT

Periodic D-T signals have DTFT's that contain delta functions
Example: $x[n]=1, \forall n \quad X \quad X(\Omega)=\left\{\begin{array}{l}2 \pi \delta(\Omega),-\pi<\Omega<\pi \\ \text { periodic, elsewhere }\end{array}\right.$
With a period of 2π

Another way of writing this is:

$$
X(\Omega)=2 \pi \sum_{k=-\infty}^{\infty} \delta(\Omega-k 2 \pi)
$$

How do we derive the result? Work backwards!

$$
\begin{aligned}
x[n] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\Omega) e^{j n \Omega} d \Omega \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} 2 \pi \delta(\Omega) e^{j n \Omega} d \Omega \\
& =e^{j n \cdot 0} \\
& =1
\end{aligned}
$$

Transform Pairs: Like for the CTFT, there is a table of common pairs (See Web)
Be familiar with them

Compare and contrast them with the table Of common CTFT's

DTFT Table

DTFT of a Rectangular Pulse

Define: D-T pulse as $p_{q}[n]= \begin{cases}1, & n=-q, \ldots,-1,0,1, \ldots, q \\ 0, & \text { otherwise }\end{cases}$

Subscript tells how far "left and right" Sum" Result...
So, by DTFT definition: $\quad P_{q}(\Omega)=\sum_{n=-q}^{q} e^{-j n \Omega}$

$$
\begin{gathered}
P_{q}(\Omega)=\frac{e^{j q \Omega}-e^{-j(q+1) \Omega}}{1-e^{-j \Omega}}=\frac{\sin \{(q+1 / 2) \Omega\}}{\sin \{\Omega / 2\}} \\
\begin{array}{c}
\text { See book for } \\
\text { details }
\end{array}
\end{gathered}
$$

Properties of the DTFT (See table provided)

Like for the CTFT, there are many properties for the DTFT. Most are identical to those for the CTFT!!

But Note: "Summation Property" replaces Integration
There is no "Differentiation Property"
Most important ones:
-Time shift
-Multiplication by sinusoid... Three "flavors"
-Convolution in the time domain
-Parseval's Theorem

Compare and contrast these with the table of CTFT properties

Comparing Properties of DTFT \& CTFT

DTFT Properties

Fourier Transform Properties

This one has no equivalent on
CTFT Properties Table...
See next example

> It provides a way to use a CTFT table to find DTFT pairs... here is an example

Example: Finding a DTFT pair from a CTFT pair

Say we are given this DTFT and want to invert it...
The four steps for using "Relationship to Inverse CTFT" property are:

1. Truncate the $\operatorname{DTFT} \mathrm{X}(\Omega)$ to the $-\pi$ to π range and set it to zero elsewhere
2. Then treat the resulting function as a function of $\omega \ldots$ call this $\Gamma(\omega)$

$$
\Gamma(\omega)=X(\omega) p_{2 \pi}(\omega)
$$

3. Find the inverse CTFT of $\Gamma(\omega)$ from a CTFT table, call it $\gamma(t)$ From CTFT table:

$$
\gamma(t)=\frac{B}{\pi} \operatorname{sinc}\left(\frac{B}{\pi} t\right)
$$

4. Get the $x[n]$ by replacing t by n in $\gamma(t)$

$$
x[n]=\left.\gamma(t)\right|_{t=n}=\frac{B}{\pi} \operatorname{sinc}\left(\frac{B}{\pi} n\right)
$$

Example of DTFT of sinusoid

$$
x[n]=\cos \left(\Omega_{0} n\right) \quad \leftrightarrow \quad X(\Omega)=?
$$

Note that: $x[n]=1 \times \cos \left(\Omega_{0} n\right) \quad$ So... use the "mult. by sinusoid" property

Another way of writing this: $Y(\Omega)=\left\{\begin{array}{l}2 \pi \delta(\Omega), \quad-\pi<\Omega<\pi \\ 2 \pi-\text { periodic elsewhere }\end{array}\right.$

Recall: $\quad x[n]=1 \times \cos \left(\Omega_{0} n\right) \quad$ so we can use the "mult. by sinusoid" result

$$
\Rightarrow X(\Omega)=\frac{1}{2}\left[Y\left(\Omega+\Omega_{0}\right)+Y\left(\Omega-\Omega_{0}\right)\right]
$$

Using the second form for $Y(\Omega)$ gives:

$$
X(\Omega)= \begin{cases}\pi\left[\delta\left(\Omega+\Omega_{0}\right)+\delta\left(\Omega-\Omega_{0}\right)\right], & -\pi<\Omega<\pi \\ 2 \pi \text {-periodic elsewhere }\end{cases}
$$

"mult. by sinusoid" property says we shift up \& down by Ω_{0}

Or... using the first form for $Y(\Omega)$ gives:

$$
Y(\Omega)=\pi \sum_{k=-\infty}^{\infty}\left[\delta\left(\Omega+\Omega_{0}-2 \pi k\right)+\delta\left(\Omega-\Omega_{0}-2 \pi k\right)\right]
$$

To see this graphically:

$$
Y(\Omega)=\left\{\begin{array}{l}
2 \pi \delta(\Omega), \quad-\pi<\Omega<\pi \\
2 \pi-\text { periodic elsewhere }
\end{array}\right.
$$

$X(\Omega)= \begin{cases}\pi\left[\delta\left(\Omega+\Omega_{0}\right)+\delta\left(\Omega-\Omega_{0}\right)\right], & -\pi<\Omega<\pi \\ 2 \pi-\text { periodic elsewhere }\end{cases}$

Comment on Some DTFT Forms on the Table

The last four entries on the DTFT Pairs Table are:

$\cos \left(\Omega_{o} n\right)$	$\pi \sum_{k=-\infty}^{\infty}\left[\delta\left(\Omega+\Omega_{o}-2 \pi k\right)+\delta\left(\Omega-\Omega_{o}-2 \pi k\right)\right]$
$\cos \left(\Omega_{o} n+\theta\right)$	$\pi \sum_{k=-\infty}^{\infty}\left[e^{-j \theta} \delta\left(\Omega+\Omega_{o}-2 \pi k\right)+e^{j \theta} \delta\left(\Omega-\Omega_{o}-2 \pi k\right)\right]$
$\sin \left(\Omega_{o} n\right)$	$j \pi \sum_{k=-\infty}^{\infty}\left[\delta\left(\Omega+\Omega_{o}-2 \pi k\right)-\delta\left(\Omega-\Omega_{o}-2 \pi k\right)\right]$
$\sin \left(\Omega_{o} n+\theta\right)$	$j \pi \sum_{k=-\infty}^{\infty}\left[e^{-j \theta} \delta\left(\Omega+\Omega_{o}-2 \pi k\right)-e^{j \theta} \delta\left(\Omega-\Omega_{o}-2 \pi k\right)\right]$

- Note that each of them has a summation... where the summation just adds in terms that are shifted by 2π
- Note that because of this shift, only the $k=0$ term lies between $-\pi$ and π
- Thus... we could more simply state these by writing only the $k=0$ term and stating that the result is 2π-periodic elsewhere... like this:

$$
\frac{B}{\pi} \operatorname{sinc}\left[\frac{B}{\pi} n\right] \longleftrightarrow\left\{\begin{array}{l}
p_{2 B}(\Omega),-\pi \leq \Omega \leq \pi \\
2 \pi \text {-periodic elsewhere }
\end{array}\right.
$$

