

State University of New York

EECE 301 Signals & Systems Prof. Mark Fowler

<u>Note Set #19</u>

• D-T Signals: DTFT Details

DTFT Details

What we saw: That the conceptual CTFT inside the DAC can also be computed from the samples... we called that thing the DTFT.

Given this signal model, find the DTFT.

By definition:
$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} = \sum_{n=0}^{q} a^n e^{-j\Omega n} = \sum_{n=0}^{q} (ae^{-j\Omega})^n$$

$$X(\Omega) = \frac{1 - \left(ae^{-j\Omega}\right)^{q+1}}{1 - ae^{-j\Omega}}$$

General Form for Geometric Sum:

$$\sum_{n=q_1}^{q_2} r^n = \frac{r^{q_1} - r^{q_2 + 1}}{1 - r}$$

Characteristics of DTFT

<u>1.Periodicity of $X(\Omega)$ </u>

 $X(\Omega)$ is a periodic function of Ω with period of 2π

 $\Rightarrow X(\Omega + 2\pi) = X(\Omega)$

Recall pictures in notes of "DTFT Intro":

 $\Rightarrow |X(\Omega)|$ is periodic with period 2π

 $\angle X(\Omega)$ is periodic with period 2π

2. $X(\Omega)$ is complex valued (in general)

$$X(\Omega) = \sum_{n} x[n] e^{-j\Omega n}$$
 complex

Usually think of $X(\Omega)$ in polar form:

$$X(\Omega) = |X(\Omega)| e^{j \angle X(\Omega)}$$
 phase
magnitude CTFT

Note: the CTFT does <u>not</u> have this property

3. Symmetry

If x[n] is <u>real-valued</u>, then: $|X(-\Omega)| = |X(\Omega)|$ (even symmetry) $\angle X(-\Omega) = -\angle X(\Omega)$ (odd symmetry) Same as CTFT

Inverse DTFT

Q: Given $X(\Omega)$ can we find the corresponding x[n]?

A: Yes!!

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{jn\Omega} d\Omega$$

We can integrate instead over
any interval of length 2π
...because the
DTFT is periodic
with period 2π

Generalized DTFT

Periodic D-T signals have DTFT's that contain delta functions

Example:
$$x[n] = 1, \forall n \leftrightarrow X(\Omega) = \begin{cases} 2\pi\delta(\Omega), -\pi < \Omega < \pi \\ periodic, elsewhere \end{cases}$$

With a period of 2π

Another way of writing this is:

$$X(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - k2\pi)$$

How do we derive the result? Work backwards!

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{jn\Omega} d\Omega$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} 2\pi \delta(\Omega) e^{jn\Omega} d\Omega$$
Sifting property
$$= e^{jn \cdot 0}$$
$$= 1$$

Transform Pairs: Like for the CTFT, there is a table of common pairs (See Web)

Be familiar with them

Compare and contrast them with the table Of common CTFT's

DTFT Table

Time Signal	DTFT		
$1, -\infty < n < \infty$	$2\pi \sum_{k=1}^{\infty} \delta(\Omega - 2\pi k)$	Time Signal	Fourier Transform
	k=	1, $-\infty < t < \infty$	$2\pi\delta(\omega)$
$\operatorname{sgn}[n] = \begin{cases} -1, & \dots, -3, -2, -1 \\ 1 & 0, 1, 2, \dots \end{cases}$	$\frac{2}{1-e^{-\beta\Omega}}$	-0.5+u(t)	1/ <i>j</i> ø
u[n]	1 ~	u(t)	$\pi\delta(\omega) + 1/j\omega$
[]	$\frac{1}{1-e^{-\beta\Omega}} + \pi \sum_{k \to \infty} \delta(\Omega - 2\pi k)$	$\delta(t)$	1, $-\infty < \omega < \infty$
$\delta[n]$	1, -∞<Ω<∞	$\delta(t-c)$, c real	e^{-jac} , c real
$\partial [n-q], q = \pm 1, \pm 2, \pm 3, \dots$	$e^{-M^{2}}$, $q = \pm 1, \pm 2, \pm 3, \dots$	$e^{-bt}u(t) b > 0$	1
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-\beta\Omega}}, a <1$	e "(i), "> v	$\frac{1}{j\omega+b}, b>0$
$\sigma^{,\Omega,\sigma}, \Omega_o \text{ real}$	$2\pi \sum_{k=\infty}^{\infty} \delta(\Omega - \Omega_o - 2\pi k), \Omega_o \text{ real}$	$e^{j\omega_0 t}$, ω_0 real	$2\pi\delta(\omega-\omega_o), \omega_o$ real
[1, n = -q, -q + 1,	$\sin[(q+\frac{1}{2})\Omega]$	$p_{\tau}(t)$	$\tau \operatorname{sinc}[\tau \omega/2\pi]$
$p_q[n] = \{ , -1, 0, 1, \dots, q \}$	$\sin(\Omega/2)$	$\tau \operatorname{sinc}[\tau t / 2\pi]$	2πp _r (ω)
0, otherwise		$\left[1-\frac{2 t }{\tau}\right]p_{\tau}(t)$	$\frac{\tau}{2}\operatorname{sinc}^{2}[\tau \omega/4\pi]$
$\frac{B}{\pi}\operatorname{sinc}\left[\frac{B}{\pi}n\right]$	$\sum_{k=-\infty}^{\infty} p_{2B}(\Omega + 2\pi k)$	$\frac{\tau}{2}\operatorname{sinc}^{2}[\tau t/4\pi]$	$2\pi \left[1 - \frac{2 \omega }{\tau}\right] p_{\tau}(\omega)$
$\cos(\Omega_o n)$	$\pi \sum_{k=\infty}^{\infty} \left[\delta(\Omega + \Omega_o - 2\pi k) + \delta(\Omega - \Omega_o - 2\pi k) \right]$	$\cos(\omega_o t)$	$\pi \left[\delta(\omega + \omega_o) + \delta(\omega - \omega_o) \right]$
$\cos(\Omega_o n + \theta)$	$\pi \sum_{i=1}^{\infty} \left[e^{-j\theta} \delta(\Omega + \Omega_o - 2\pi k) + e^{j\theta} \delta(\Omega - \Omega_o - 2\pi k) \right]$	$\cos(\omega_o t + \theta)$	$\pi \left[e^{-j\theta} \delta(\omega + \omega_o) + e^{j\theta} \delta(\omega - \omega_o) \right]$
$sin(\mathbf{O} n)$	<u>k</u> ∞ ∞	$\sin(\omega_o t)$	$j\pi[\delta(\omega + \omega_o) - \delta(\omega - \omega_o)]$
Sun(22011)	$j\pi \sum_{k \to \infty} [\delta(\Omega + \Omega_o - 2\pi k) - \delta(\Omega - \Omega_o - 2\pi k)]$	$\sin(\omega_o t + \theta)$	$j\pi \left[e^{-j\theta} \delta(\omega + \omega_o) - e^{j\theta} \delta(\omega - \omega_o) \right]$
$\sin(\Omega_o n + \theta)$	$j\pi \sum_{k=-\infty}^{\infty} \left[e^{-j\theta} \delta(\Omega + \Omega_o - 2\pi k) - e^{j\theta} \delta(\Omega - \Omega_o - 2\pi k) \right]$		

Fourier Transform Table

DTFT of a Rectangular Pulse Define: D-T pulse as $p_q[n] = \begin{cases} 1, & n = -q, \dots, -1, 0, 1, \dots, q \\ \land & 0, & otherwise \end{cases}$ Subscript tells how far "left and right" Use "Geometric Sum" Result... So, by DTFT definition: $P_q(\Omega) = \sum_{q=1}^{q} e^{-jn\Omega}$ n = -a $P_{q}(\Omega) = \frac{e^{jq\Omega} - e^{-j(q+1)\Omega}}{1 - e^{-j\Omega}} = \frac{\sin\{(q+1/2)\Omega\}}{\sin\{\Omega/2\}}$

See book for

details

Properties of the DTFT (See table provided)

Like for the CTFT, there are many properties for the DTFT. <u>Most</u> are identical to those for the CTFT!!

But Note: "Summation Property" replaces Integration

There is no "Differentiation Property"

Most important ones:

-Time shift

-Multiplication by sinusoid... Three "flavors"

-Convolution in the time domain

-Parseval's Theorem

Compare and contrast these with the table of CTFT properties

Comparing Properties of DTFT & CTFT

DTFT Properties

Fourier Transform Properties

Property Name	Property		Property Name	Property	
Linearity	ax[n] + bv[n]	$aX(\Omega) + bV(\Omega)$	Linearity	ax(t) + by(t)	$aX(\omega) + bV(\omega)$
Time Shift	x[n-q],	$e^{-jq\Omega}X(\Omega), q \text{ any integer}$	Time Shift	x(t-c)	$e^{-j\omega c}X(\omega)$
	q any integer		Time Scaling	$x(at), a \neq 0$	$\frac{1}{a}X(\omega/a), a \neq 0$
Time Scaling	$x(at), a \neq 0$	$\frac{1}{a}X(\Omega/a), a \neq 0$	Time Reversal	x(-t)	$X(-\omega)$
Time Reversal	x[-n]	$X(-\Omega)$			$\overline{X(\alpha)}$ if $x(t)$ is real
		$\overline{X(\Omega)}$ if $x[n]$ is real	Multiply by t ⁿ	$t^n x(t), n = 1, 2, 3,$	d^n
Multiply by n	nx[n]	$j \frac{d}{d\Omega} X(\Omega)$			$j^n \frac{\alpha}{d\omega^n} X(\omega), n = 1, 2, 3, \dots$
Multiply by Complex Exponential	$a^{\beta\Omega,\mu}$ r[\mu] O real	$\frac{d\Omega}{X(Q-Q)}$ Q real	Multiply by Complex Exponential	$e^{j\omega_o t}x(t), \omega_o \text{ real}$	$X(\omega - \omega_o), \omega_o$ real
	e x[n], sz _o icai	11 (dd dd ₀), dd ₀ fedd	Multiply by Sine	$\sin(\omega_o t) x(t)$	$\frac{j}{2} [X(\omega + \omega_o) - X(\omega - \omega_o)]$
Multiply by Sine	$sin(\Omega_o n)x[n]$	$\frac{j}{2} \left[X(\Omega + \Omega_o) - X(\Omega - \Omega_o) \right]$	Multiply by Cosine	$\cos(\omega_o t)x(t)$	$\frac{1}{2} \frac{1}{[X(\omega + \omega_{1}) + X(\omega - \omega_{2})]}$
Multiply by Cosine	$\cos(\Omega_o n)x[n]$	$\frac{1}{2} [X(\Omega + \Omega_o) + X(\Omega - \Omega_o)]$	Time Differentiation	d ⁿ (o t o o	$(j\omega)^n X(\omega), n = 1, 2, 3,$
Summation	" 	$\frac{1}{1}$ $V(0) + \sigma \sum_{k=1}^{\infty} V(0) \delta(0, 2\sigma t)$		$\frac{1}{dt^n}x(t), n=1, 2, 3, \dots$	
	$\sum_{l \to \infty} \lambda[l]$	$\frac{1-e^{-j\Omega} X(\Sigma) + n \sum_{k \to \infty} X(0)O(\Sigma 2 - 2ik)}{k - \infty}$	Time Integration	$\int x(\lambda) d\lambda$	$\frac{1}{j\omega}X(\omega) + \pi X(0)\delta(\omega)$
Convolution in Time	$x[n]^*h[n]$	$X(\Omega)H(\Omega)$	Convolution in Time	$-\infty$ y(t) * h(t)	$X(\alpha)H(\alpha)$
Multiplication in Time	x[n]w[n]	$\frac{1}{2\pi}\int_{-\infty}^{\pi} X(\Omega - \lambda)W(\lambda)d\lambda (\text{conv.})$	Multiplication in Time	x(t)w(t)	$\frac{1}{2}X(\omega)^*W(\omega)$
Parseval's Theorem (General)	$\sum_{n \to -\infty}^{\infty} x[n]\overline{v[n]} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega)\overline{V(\Omega)}d\Omega$		Parseval's Theorem (General)	$\int_{-\infty}^{\infty} x(t)\overline{v(t)}dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)\overline{V(\omega)}d\omega$	
Parseval's Theorem (Energy)	$\sum_{n \to \infty}^{\infty} x^{2}[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) ^{2} d\Omega \text{if } x(t) \text{ is real}$		Parseval's Theorem (Energy)	$\int_{-\infty}^{\infty} x^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2 d\omega \text{if } x(t) \text{ is real}$	
Line CITT Table & Sed Lines	$\sum_{n \to \infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) ^2 d\Omega$			$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(t) ^2 dt$	$X(\omega) ^2 d\omega$
of a DTFT $X(\Omega)$: $x[n] = ??$	Form $\Gamma(\omega) = X(\omega)$	$p_{2\pi}(\omega)$ and look up $\gamma(t) \leftrightarrow \Gamma(\omega)$	Duality: If $x(t) \leftrightarrow X(\omega)$	X(t)	$2\pi x(-\omega)$
	Then get $x[n] = \gamma(n)$	f_{t-n}			

This one has no equivalent on CTFT Properties Table... See next example

It provides a way to use a CTFT table to find DTFT pairs... here is an example

1/17

Say we are given this DTFT and want to invert it...

The four steps for using "Relationship to Inverse CTFT" property are:

- 1. Truncate the DTFT X(Ω) to the - π to π range and set it to zero elsewhere
- 2. Then treat the resulting function as a function of ω ... call this $\Gamma(\omega)$

$$\Gamma(\omega) = X(\omega)p_{2\pi}(\omega)$$

3. Find the inverse CTFT of $\Gamma(\omega)$ from a CTFT table, call it $\gamma(t)$

From CTFT table: $\gamma(t) = \frac{B}{\pi} \operatorname{sinc}\left(\frac{B}{\pi}t\right)$

4. Get the x[n] by replacing t by n in $\gamma(t)$

$$x[n] = \gamma(t)\Big|_{t=n} = \frac{B}{\pi}\operatorname{sinc}\left(\frac{B}{\pi}n\right)$$

Example of DTFT of sinusoid

Another way of writing this:

$$Y(\Omega) = \begin{cases} 2\pi\delta(\Omega), & -\pi < \Omega < \pi \\ 2\pi - \text{periodic elsewhere} \end{cases}$$

Recall: $x[n] = 1 \times \cos(\Omega_0 n)$ so we can use the "mult. by sinusoid" result

$$\Rightarrow X(\Omega) = \frac{1}{2} [Y(\Omega + \Omega_0) + Y(\Omega - \Omega_0)]$$

Using the second form for $Y(\Omega)$ gives:

$$X(\Omega) = \begin{cases} \pi [\delta(\Omega + \Omega_0) + \delta(\Omega - \Omega_0)], & -\pi < \Omega < \pi \\ 2\pi - periodic \ elsewhere \end{cases}$$

"mult. by sinusoid" property says we shift up & down by Ω_0

Or...using the first form for $Y(\Omega)$ gives:

$$Y(\Omega) = \pi \sum_{k=-\infty}^{\infty} \left[\delta(\Omega + \Omega_0 - 2\pi k) + \delta(\Omega - \Omega_0 - 2\pi k) \right]$$

Comment on Some DTFT Forms on the Table

	n
$\cos(\Omega_o n)$	$\pi \sum_{k \to \infty}^{\infty} \left[\delta(\Omega + \Omega_o - 2\pi k) + \delta(\Omega - \Omega_o - 2\pi k) \right]$
$\cos(\Omega_o n + \theta)$	$\pi \sum_{k=-\infty}^{\infty} \left[e^{-j\theta} \delta(\Omega + \Omega_o - 2\pi k) + e^{j\theta} \delta(\Omega - \Omega_o - 2\pi k) \right]$
$\sin(\Omega_o n)$	$j\pi \sum_{k=-\infty}^{\infty} \left[\delta(\Omega + \Omega_o - 2\pi k) - \delta(\Omega - \Omega_o - 2\pi k) \right]$
$\sin(\Omega_o n + \theta)$	$j\pi\sum_{k=-\infty}^{\infty} \left[e^{-j\theta} \delta(\Omega + \Omega_o - 2\pi k) - e^{j\theta} \delta(\Omega - \Omega_o - 2\pi k) \right]$

The last four entries on the DTFT Pairs Table are:

- Note that each of them has a summation... where the summation just adds in terms that are shifted by 2π
- Note that because of this shift, only the k = 0 term lies between $-\pi$ and π
- Thus... we could more simply state these by writing only the k = 0 term and stating that the result is 2π -periodic elsewhere... like this:

$$\frac{\underline{B}}{\pi}\operatorname{sinc}\left[\frac{\underline{B}}{\pi}n\right] \longleftrightarrow \begin{cases} p_{2B}(\Omega), -\pi \leq \Omega \leq \pi \\ 2\pi \text{-periodic elsewhere} \end{cases}$$

