

State University of New York

EECE 301 Signals & Systems Prof. Mark Fowler

<u>Note Set #20</u>

• D-T Signals: Definition of DFT – Numerical FT Analysis

Discrete Fourier Transform (DFT)

We've seen that the DTFT is a good <u>analytical</u> tool for D-T signals (and systems – as we'll see later)

Namely
$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$
 (DTFT) can be computed analytically

(at least in principle) when we have an <u>equation</u> model for x[n]

Q: Well... why can't we use a <u>computer</u> to compute the DTFT <u>from Data</u>?

A: There are <u>two reasons</u> why <u>we can't</u>!!

- 1. The DTFT requires an <u>infinite</u> number of terms to be summed over $n = \dots, -3, -2, -1, 0, 1, 2, 3, \dots$
- 2. The DTFT must be <u>evaluated</u> at an <u>infinite</u> number of points over the interval $\Omega \in (-\pi, \pi]$

-The first one ("infinite # of terms")... isn't a problem if x[n] has "finite duration"

-The second one ("infinitely many points")... is always a problem!!

Well... <u>maybe</u> we can just compute the DTFT at a <u>finite</u> set of points!!

Let's explore this possibility... it will lead us to the <u>**D**</u> iscrete <u>**F**</u> ourier <u>**T**</u> ransform

Suppose we have a finite duration signal: x[n] = 0 for n < 0 and $n \ge N$

Then the DTFT of this <u>finite duration</u> signal is:

$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} = \sum_{n=0}^{N-1} x[n]e^{-j\Omega n}$$
 we can leave out terms that are zero

If we could compute this at every Ω value... it might look like this:

Now suppose we take the numerical data x[n] for n = 0, ..., N-1

and just compute this DTFT at a <u>finite number of Ω values</u> (8 points here... but in practice we'd do it MANY more points... thousands of points!)

Now, even though we are interested in the $-\pi$ to π range, But, instead compute their we now play a trick to make the later equations easier... "mirror images" at Ω values between π and 2π We don't compute points at <u>negative</u> Ω values... Don't need... same as $\Omega = 0$ $X(\Omega)$ Ω -3π -2π $-\pi/2$ $\pi/2$ 2π 3π -π π

So say we want to compute the DTFT at M points, then choose

$$Ω_k = k \frac{2\pi}{M}$$
, for $k = 0, 1, 2, ..., M - 1$
Spacing between computed Ω values

In otherwords:

$$\Omega_0 = 0, \quad \Omega_1 = \frac{2\pi}{M}, \quad \Omega_2 = 2\frac{2\pi}{M}, \quad \dots \quad , \Omega_{M-1} = (M-1)\frac{2\pi}{M}$$

Thus... mathematically what we have computed for our <u>finite-duration</u> signal is:

$$X(\Omega_k) = \sum_{n=0}^{N-1} x[n] e^{-jn\Omega_k} = \sum_{n=0}^{N-1} x[n] e^{-jnk\frac{2\pi}{M}}, \quad for \quad k = 0, 1, 2, ..., M-1$$

There is just one last step to get the "official" definition of

the <u>D</u>iscrete <u>F</u>ourier <u>T</u>ransform (DFT):

In other words: Compute as many "frequency points" as "signal points"

- 1. So far... we've defined the DFT
 - a. We based this on the motivation of wanting to compute the DTFT at a finite number of points
 - b. Later... we'll look more closely at the general relationship between the DFT and the DTFT
- 2. For now... we want to understand a few properties of the DFT
 - a. There a more properties... if you take a DSP class you'll learn them there.

Properties of the DFT

1. Symmetry of the DFT

We arrived at the DFT via the DTFT so it should be no surprise that the DFT inherits some sort of symmetry from the DTFT.

$$X[N-k] = \overline{X}[k], \quad k = 0, 1, 2, ..., N-1$$

Because the "upper" DFT points are just like the "negative index" DFT points... this DFT symmetry property is exactly the same as the DTFT symmetry around the origin:

2. Inverse DFT

Recall that the DTFT can be inverted... given $X(\Omega)$ you can find the signal x[n]

Because we arrived at the DFT via the DTFT... it should be no surprise that the DFT inherits an inverse property from the DTFT.

Actually, we needed to force M = N to enable the DFT inverse property to hold!!

So... Given N DFT points X[k] for
$$k = 0, ..., N-1$$

Compute N signal data points using:
$$x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X[k] e^{j2\pi kn/N} \qquad n = 0, 1, 2, ..., N-1$$
Inverse DFT
(IDFT)

Compare to the DFT... a remarkably similar structure:

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi kn/N} \qquad k = 0, 1, 2, ..., N-1$$

FFT Algorithm (We won't delve into HOW/WHY this works)

"FFT" = $\underline{\mathbf{F}}$ ast $\underline{\mathbf{F}}$ ourier $\underline{\mathbf{T}}$ ransform

The FFT is not a new "thing" to compute (the DFT is a "thing" we compute)

The FFT is just an efficient algorithm for computing the DFT

If you code the DFT algorithm in the obvious way it takes:

about N^2 multiples, and N^2 additions.

The FFT is a trick to compute the DFT more efficiently – it takes:

about
$$\begin{cases} \frac{N}{2} \log_2(N) & multiples \\ \frac{N}{2} \log_2(N) & additions \end{cases}$$

Similar ideas hold for computing the inverse DFT.

Note: The most common FFT algorithm requires that the number of samples put into it be a power of two... later we'll talk about how to "zero-pad" up to a power of two!

1/13

The following plot shows the <u>drastic</u> improvement the FFT gives over the DFT:

DFT Summary... What We Know So Far!

- Given *N* signal data points... we can compute the DFT
 - And we can do this efficiently using the FFT algorithm
- Given N DFT points... we can get back the N signal data points
 And we can do this efficiently using the IFFT algorithm
- We know that there is a symmetry property
- We know that we can move the "upper" DFT points down to represent the "negative" frequencies...
 - this will be essential in practical uses of the DFT
 - Remember... we ended up with the "upper" DFT points only to make the indexing by k easy!!!
 - It is just to make the DFT equation easy to write!!

Now...

• We need to explore the connections between the DFT and the DTFT

• Then... understand the relation between the CTFT, DTFT, & DFT