State University of New York

EECE 301
 Signals \& Systems Prof. Mark Fowler

Note Set \#20

- D-T Signals: Definition of DFT - Numerical FT Analysis

Discrete Fourier Transform (DFT)

We've seen that the DTFT is a good analytical tool for D-T signals (and systems as we'll see later)
Namely $X(\Omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n}$ (DTFT) can be computed analytically
(at least in principle) when we have an equation model for $x[n]$
Q: Well... why can't we use a computer to compute the DTFT from Data?
A: There are two reasons why we can't!!

1. The DTFT requires an infinite number of terms to be summed over $n=$ $\ldots,-3,-2,-1,0,1,2,3, \ldots$
2. The DTFT must be evaluated at an infinite number of points over the interval $\Omega \in(-\pi, \pi]$
-The first one ("infinite \# of terms")... isn’t a problem if $x[n]$ has "finite duration" -The second one ("infinitely many points")... is always a problem!!

Well... $\underline{\text { maybe we can just compute the DTFT at a finite set of points!! }}$

Let's explore this possibility... it will lead us to the $\underline{\text { Discrete }} \underline{\text { Fourier }} \boldsymbol{T}$ ransform
Suppose we have a finite duration signal: $x[n]=0$ for $n<0$ and $n \geq N$
Then the DTFT of this finite duration signal is:

$$
X(\Omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n}=\sum_{n=0}^{N-1} x[n] e^{-j \Omega n} \quad \begin{gathered}
\text { we can leave out } \\
\text { terms that are zero }
\end{gathered}
$$

If we could compute this at every Ω value... it might look like this:

Now suppose we take the numerical data $x[n]$ for $n=0, \ldots, N-1$ and just compute this DTFT at a finite number of Ω values (8 points here... but in practice we'd do it MANY more points... thousands of points!)

Now, even though we are interested in the $-\pi$ to π range, we now play a trick to make the later equations easier...

So say we want to compute the DTFT at M points, then choose

$$
\Omega_{k}=k \frac{2 \pi}{M}, \text { for } k=0,1,2, \ldots, M-1
$$

Spacing between computed Ω values
In otherwords:

$$
\Omega_{0}=0, \quad \Omega_{1}=\frac{2 \pi}{M}, \quad \Omega_{2}=2 \frac{2 \pi}{M}, \quad \ldots \quad \Omega_{M-1}=(M-1) \frac{2 \pi}{M}
$$

Thus... mathematically what we have computed for our finite-duration signal is:

$$
X\left(\Omega_{k}\right)=\sum_{n=0}^{N-1} x[n] e^{-j n \Omega_{k}}=\sum_{n=0}^{N-1} x[n] e^{-j n k \frac{2 \pi}{M}}, \quad \text { for } \quad k=0,1,2, \ldots, M-1
$$

There is just one last step to get the "official" definition of
the Discrete $\underline{\text { Fourier }}$ Transform (DFT):

In other words: Compute as many "frequency points" as "signal points"

So... Given N signal data points $x[n]$ for $n=0, \ldots, N-1$
Compute N DFT points using:

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N} \quad k=0,1,2, \ldots, N-1
$$

> Definition of the DFT

$$
\Omega_{k}=k \frac{2 \pi}{N}
$$

Plotting the DFT (we'll say more about this later..)

$$
N=8 \text { case }
$$

We often plot the DFT vs. the DFT index k (integers)

But... we know that these points can be tied back to the true $\mathrm{D}-\mathrm{T}$ frequency Ω :

Spacing between computed Ω values

$$
\frac{2 \pi}{N} \Rightarrow \frac{2 \pi}{8}=\frac{\pi}{4}
$$

1. So far... we've defined the DFT
a. We based this on the motivation of wanting to compute the DTFT at a finite number of points
b. Later... we'll look more closely at the general relationship between the DFT and the DTFT
2. For now... we want to understand a few properties of the DFT
a. There a more properties... if you take a DSP class you'll learn them there.

Properties of the DFT

1. Symmetry of the DFT

We arrived at the DFT via the DTFT so it should be no surprise that the DFT inherits some sort of symmetry from the DTFT.

$$
X[N-k]=\bar{X}[k], \quad k=0,1,2, \ldots, N-1
$$

$$
X[N-k]=\bar{X}[k], \quad k=0,1,2, \ldots, N-1
$$

Because the "upper" DFT points are just like the "negative index" DFT points... this DFT symmetry property is exactly the same as the DTFT symmetry around the origin:

2. Inverse DFT

Recall that the DTFT can be inverted... given $X(\Omega)$ you can find the signal $x[n]$
Because we arrived at the DFT via the DTFT... it should be no surprise that the DFT inherits an inverse property from the DTFT.

Actually, we needed to force $M=N$ to enable the DFT inverse property to hold!!

So... Given N DFT points $X[k]$ for $k=0, \ldots, N-1$ Compute N signal data points using:

$$
x[n]=\frac{1}{N} \sum_{n=0}^{N-1} X[k] e^{j 2 \pi k n / N} \quad n=0,1,2, \ldots, N-1
$$

Inverse DFT (IDFT)

Compare to the DFT... a remarkably similar structure:

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N} \quad k=0,1,2, \ldots, N-1
$$

FFT Algorithm (We won't delve into HOW/WHY this works)

"FFT" = Fast Fourier Transform
The FFT is not a new "thing" to compute (the DFT is a "thing" we compute)
The FFT is just an efficient algorithm for computing the DFT
If you code the DFT algorithm in the obvious way it takes:
about N^{2} multiples, and N^{2} additions.
The FFT is a trick to compute the DFT more efficiently - it takes:

$$
\text { about } \begin{cases}\frac{N}{2} \log _{2}(N) & \text { multiples } \\ \frac{N}{2} \log _{2}(N) & \text { additions }\end{cases}
$$

Similar ideas hold for computing the inverse DFT.

Note: The most common FFT algorithm requires that the number of samples put into it be a power of two... later we'll talk about how to "zero-pad" up to a power of two!

The following plot shows the drastic improvement the FFT gives over the DFT:

DFT Summary... What We Know So Far!

- Given N signal data points... we can compute the DFT
- And we can do this efficiently using the FFT algorithm
- Given N DFT points... we can get back the N signal data points
- And we can do this efficiently using the IFFT algorithm
- We know that there is a symmetry property
- We know that we can move the "upper" DFT points down to represent the "negative" frequencies...
- this will be essential in practical uses of the DFT
- Remember... we ended up with the "upper" DFT points only to make the indexing by k easy!!!
- It is just to make the DFT equation easy to write!!

```
Now...
- We need to explore the connections between the DFT and the DTFT
- Then... understand the relation between the CTFT, DTFT, & DFT
```

