
1/11

EECE 301
Signals & Systems

Prof. Mark Fowler

Note Set #22
• D-T Systems: DT Systems & Difference Equations

2/11

D-T System Models
So far we’ve seen how to use the FT to analyze circuits…

• Use phasors and standard circuit analysis methods
• Find the Frequency Response of the circuit

But for D-T systems we can’t use circuit analysis methods!
So… instead we use the fact that LTI DT systems are described by
Difference Equations.

• Later we’ll use that to learn to use DTFT to analyze LTI DT systems

][...]1[][][...]1[][101 MnxbnxbnxbNnyanyany MN 

A general Nth order Difference Equations looks like this:

Most “Advanced”
Output Sample

Least “Advanced”
Output Sample

The difference between these two index values is the “order” of the difference eq.
Here we have: n – (n – N) = N

3/11

Before we learn how to apply the DTFT to DT systems we first
get a little more understanding of just how a difference equation
works

Here we’ll look at a numerical way to solve Difference Equations
that is called “Recursion”… and it is actually used to implement
(or build) many D-T systems, which is the main advantage of the
recursive method.

Exploring How Difference Equations “Work”

The disadvantage of solving using the recursive method is that it
doesn’t provide a so-called “closed-form” solution… in other
words, you don’t get an equation that describes the output… you
just get a finite-duration sequence of numbers that shows part of
the output.

Later we’ll see how to get “closed-form” solutions… such
solutions give engineers keen insight needed to perform design
and analysis tasks.

4/11

Solution by Recursion





M

i
i

N

i
i inxbinyany

01
][][][

Some “past”
output values,
with values
already known

current & past
input values
already “received”

“current” output
value to be
computed

But, for computer processing it is possible to recursively solve (i.e. compute) a
numerical solution. In fact, this is how D-T systems are implemented (i.e. built!)

We can re-write any linear, constant-coefficient difference equation in “recursive
form”. Here is the form we’ve already seen for an Nth order difference:

][...]1[][][...]1[][101 MnxbnxbnxbNnyanyany MN 





M

i
i

N

i
i inxbinyany

01

][][][Re-Write As:

Now… isolating the y[n] term gives the “Recursive Form”:
The key to Recursive
Form is that you have
the current output y[n]
in terms of past
outputs y[n - i]

5/11

Note: sometimes it is necessary to re-index a difference
equation using n+kn to get this form… as shown below.

][2][]1[5.1]2[nxnynyny 

Here is a slightly different form… but it is still a difference equation:

If you isolate y[n] here you will get the current output value in terms of
future output values (Try It!)… We don’t want that!

So… in general we start with the “Most Advanced” output sample… here
it is y[n+2]… and re-index it to get only n (of course we also have to re-
index everything else in the equation to maintain an equation):

]2[2]2[]1[5.1][ nxnynyny

Now we can put this into recursive form as before.

So here we need to subtract 2 from each sample argument:

6/11

Ex: Solve this difference equation recursively

]2[2]2[]1[5.1][ nxnynyny

For unit step

And ICs of:

][][nunx 








1]1[
2]2[

y
y

Recursive Form:]2[2]2[]1[5.1][ nxnynyny

n x[n]=u[n] y[n]

-2

-1

0

1

2

3

Note: You need N
“past” values as IC’s to

solve an Nth order
Difference Equation

5.002215.1 
3rd: Compute n=0 Output

y[0]=1.5y[-1] – y[-2] + 2x[-2]
75.1021)5.0(5.1 

4th: Compute n=1 Output
y[1]=1.5y[0] – y[-1] + 2x[-1]

Etc.

-.0125

3.563

2nd: Put IC’s Here2

1

1st: Fill in Input (Unit Step here)

0

0

1

1

1

1

7/11

function y = recur_2(x,y_ics);

y(1) = y_ics(1);
y(2) = y_ics(2);

for k=3:(length(x)+2)
y(k)=1.5*y(k-1)-y(k-2)+2*x(k-2);

end

]2[2]2[]1[5.1][ nxnynyny
We can write a simple matlab routine to implement this
difference equation

x is a vector of input samples
(from our table-based solution we see that
we need the vector x to start at n = -2)

y_ics is 1x2 vector holding the 2 ICs

y will be the returned vector holding the output
samples

Write the ICs into the output
vector’s first two positions Each time through the for-loop

we compute the output value
according to the recursive form
of the difference equation

There is a more general version
of this code on the Book’s web
page.

stem(-2:(length(y)-3),y)

x = [0 0 ones(1,20)];

8/11

function y = recur_2(x,y_ics);

y(1) = y_ics(1);
y(2) = y_ics(2);

for k=3:(length(x)+2)
y(k)=1.5*y(k-1)-y(k-2)+2*x(k-2)

end

The trickiest part of getting this code right is getting the indexing right!!!

Mathematical indexing used in difference equations is “zero-origin” and allows negative
indices.

Matlab indexing is “one-origin” and does NOT allow negative indexing.

The “k” in the code is related to the math index n according to: k = n+3

Thus, when we first enter the loop we are computing for k=3 or n = 0

Store y[-2] in k=1 position of vector
Store y[-1] in k=2 position of vector

We already have filled the first two
elements of the output vector so we
put y[0] into the 3rd position, etc.

We must continue the loop until the
last input value is used… since we use
x(k-2) in the recursion we need to stop
our for-loop at length(x)+2.

We must continue the loop until the
last input value is used… since we use
x(k-2) in the recursion we need to stop
our for-loop at length(x)+2.

That way… when we go through the last
loop (i.e., k = length(x)+2) we’ll index x
using k-2 = length(x)… which grabs the
last element in the input vector x

9/11

MATLAB “filter” Command
MATLAB has a function to implement an LTI DT system defined by a Diff Eq.

>> x = [ones(1,11) zeros(1,20)];
>> y = filter([0.5 0.4],[1 0.7 0.5],x);
>> subplot(2,1,1); stem(0:30,x,’b’)
>> subplot(2,1,2); stem(0:30,y,’r’)

[] 0.7 [1] 0.5 [2] 0.5 [] 0.4 [1]y n y n y n x n x n      
1, 0, 1, 2, , 10

[]
0,

n
x n

elsewhere


 




y=filter(b,a,x)

0 5 10 15 20 25 30

0
0.5

1

n (sample index)

x[
n]

0 5 10 15 20 25 30

0
0.5

1

n (sample index)

y[
n]

10/11

Computer
Running
Recursion

code

x[n] y[n]

This is a S/W implementation of the D-T
system…. It is also possible to build

dedicated digital H/W to implement it.

We could use these ideas to implement this D-T system on a
computer… although for real-time operation we would not use
matlab, we likely would write the code using C or assembly language.

Also… we probably wouldn’t implement this on a general
microprocessor like those used in desktop or laptop computers. We
would implement it in a microcontroller for simple applications but
for high-performance signal processing applications (like for radar
and sonar, etc.) we would use a special DSP microprocessor.

Web Link to Extra Info on DSP Processors

Web Link to Example of Dedicated H/W
D-T System

11/11

1 0 1[] [1] ... [] [] [1] ... []N Ny n a y n a y n N b x n b x n b x n N          

Block Diagram (“Hardware”) View of DT System

D = Delay (“Memory Latch”) All Elements are “Clocked” (not shown)

DD D D

–a1

–a2

–a3

–aN




b1

b2

b3

bN

b0

x[n]

y[n]

…

…
…

Feedback
Terms!

Feedback Terms!
We show the same # of terms on each side… can
always force this case by extending one side with

zero-valued coefficients

