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EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #24
• D-T Systems: Z-Transform … “Power Tool” for system analysis
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Z-Transform & D-T Systems
Z-Transform is a powerful tool for the analysis and design of DT LTI Systems

Z-T is used to

Solve difference equations with 
non-zero initial conditions

Characterize systems using the 
“Transfer Function”

We’ll do this later Our initial focus is here
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Z-transform definitions
Given a D-T signal x[n]   - < n <  we’ve already seen how to use the DTFT:

Unfortunately the DTFT doesn’t “converge” for some signals… the ZT mitigates 
this problem by including decay in the transform: 
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Controls decay of summand

For the Z-transform we use:  z = e j.     So… z is just a complex variable that 
we almost always view  in polar form
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Two-Sided Z-transform (“Bilateral” ZT)
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There are two forms of the Z-Transform:

If x[n] is a causal signal then these 
two types of ZT are identical.

Our Initial 
Focus is 

Here
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“Causal Signal” means that x[n] = 0 for n < 0

One-Sided Z-transform (“Unilateral” ZT)
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So… the Z-Transform gives a complex-valued function on the “z-plane”
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For the Z-Transform we’ll need to divide the 
plane into two parts:

• those values of z inside the “unit circle”

• those values of z outside the “unit circle”

“Unit Circle”  = all z such 
that |z| = 1, i.e. all z = e j
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Example of Finding the ZT: Unit Impulse Sequence

Region of Convergence (ROC)

Set of all z values for which the sum in the ZT definition converges

Each signal has its own region of convergence.

1][ n

This result and many others are on the Table of Z Transforms
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Example of Finding the ZT: Unit Step u[n]
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Using standard result 
for “geometric sum”

ROC = all z such  
that |z| > 1

Example of Finding the ZT: Causal Exponential 
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Relationship between ZT & DTFT

X() = “walk around the unit circle” and get X(z) values 


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zXX )()(If ROC includes the unit circle, then we can say that:    

Surface Plot of |X(z)| 

Shows values 
on Unit Circle

Explains why X() is periodic… 
 is an “angle around the unit 
circle” 

 Once we’ve walked around 
the unit circle… going farther 
just repeats the values X(z) that 
we are grabbing
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Inverse Z-T
There is an integral inversion formula but it is not really used in practice! 

 Use Partial Fraction Expansion (PFE)

The use of PFE here is almost exactly the same as for Laplace transforms that 
you may have seen before (and we’ll see later).

… the only difference is that you first divide by z before performing the PFE… 
then after expanding you multiply by z to get the final expansion.

Example of Partial Fraction for Inverse ZT:  

Suppose you want to find the inverse ZT of
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See Next Note Set 
for details on PFE 
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Now… the point of dividing by z becomes clear…  you get terms like this (with 
z’s in the numerator)… and they are on the ZT table!!!
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[r,p,k]=residue([1 1],[1 0.75 0.125 0])

r = p = k = []
4 -0.5000

-12 -0.2500
8 0

Then use matlab’s residue to do a partial fraction expansion on Y(z)/z

r
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For each term:
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A Few Properties of Bilateral ZT
Linearity: Same ideas as for CTFT and DTFT

Time Shift

There are several other 
properties… they are listed 

on the Table of Z 
Transform Properties. 

Note: Here q can 
be positive or 

negative 
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Pull out 
the z-2
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System Property

The output of a LTI DT system has ZT Y(z) given by  ( ) ( ) ( )Y z X z H z

So we have:
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Note how similar this is to what we saw for DTFT:

Terminology
• Frequency Response:  H()
• Transfer Function: H(z) 


