State University of New York

EECE 301
 Signals \& Systems Prof. Mark Fowler

Note Set \#24

- D-T Systems: Z-Transform ... "Power Tool" for system analysis

Z-Transform \& D-T Systems

Z-Transform is a powerful tool for the analysis and design of DT LTI Systems

Z-transform definitions

Given a D-T signal $x[n]-\infty<n<\infty$ we've already seen how to use the DTFT:

$$
\text { DTFT : } X(\Omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n}
$$

Periodic in Ω with period 2π

Unfortunately the DTFT doesn't "converge" for some signals... the ZT mitigates this problem by including decay in the transform:

$$
e^{-j \Omega n} \text { vs. } \alpha^{-n} e^{-j \Omega n} \equiv\left(\alpha e^{j \Omega}\right)^{-n} \equiv z^{-n}
$$

For the Z-transform we use: $z=\alpha e^{j \Omega}$. So... z is just a complex variable that we almost always view in polar form

$$
\operatorname{DTFT}: X(\Omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n} \quad Z T: X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

There are two forms of the Z-Transform:
Two-Sided Z-transform ("Bilateral" ZT)

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \quad z \text { is complex-valued }
$$

One-Sided Z-transform ("Unilateral" ZT)

$$
\left.\begin{array}{l}
X(z)=\sum_{n=0}^{\infty} x[n] z^{-n} \quad z \text { is complex-valued } \\
\text { If } x[n] \text { is a causal signal then these }
\end{array}\right\} \text { We'll use this later }
$$ two types of ZT are identical.

$$
\text { "Causal Signal" means that } x[n]=0 \text { for } n<0
$$

So... the Z-Transform gives a complex-valued function on the "z-plane"

$$
\begin{array}{|lll|}
\hline \operatorname{Im}\{z\} & & \\
& & \\
& & \operatorname{Re}\{z\} \\
\hline
\end{array}
$$

For the Z-Transform we'll need to divide the plane into two parts:

- those values of z inside the "unit circle"
- those values of z outside the "unit circle"
"Unit Circle" $=$ all z such that $|z|=1$, i.e. all $z=e^{j \Omega}$

Region of Convergence (ROC)

Set of all z values for which the sum in the ZT definition converges
Each signal has its own region of convergence.

Example of Finding the ZT: Unit Impulse Sequence

$$
\begin{gathered}
\delta[n]= \begin{cases}1, & n=0 \\
0, & n \neq 0\end{cases} \\
\delta[n] \leftrightarrow 4
\end{gathered}
$$

$$
Z\{\delta[n]\}=\sum_{n=-\infty}^{\infty} \delta[n] z^{-n}
$$

$$
=1 \times z^{0}+0 \times z^{-1}+0 \times z^{-2}+\cdots
$$

$$
=1
$$

ROC = all complex \#'s

This result and many others are on the Table of Z Transforms

Example of Finding the ZT: Unit Step $u[n]$

$$
\left.\begin{array}{c}
U(z)=\sum_{n=-\infty}^{\infty} u[n] z^{-n}=\sum_{n=0}^{\infty} z^{-n}=\frac{z}{z-1}=\frac{1}{1-z^{-1}} \quad \begin{array}{r}
\text { ROC }=\text { all } z \text { such } \\
\text { that }|z|>1
\end{array} \\
\text { Using standard result } \\
\text { for "geometric sum" }
\end{array}\right\} \begin{aligned}
& u[n] \leftrightarrow \frac{z}{z-1}=\frac{1}{1-z^{-1}}
\end{aligned}
$$

Example of Finding the ZT: Causal Exponential

$$
x[n]=a^{n} u[n]
$$

Again using geometric sum: $\quad X(z)=\sum_{n=0}^{\infty} a^{n} z^{-n}=\sum_{n=0}^{\infty}\left(\frac{a}{z}\right)^{n}=\frac{z}{z-a}=\frac{1}{1-a z^{-1}}$

$$
\text { ROC }=\text { all } z \text { such that }|z|>|a|
$$

$$
a^{n} u[n] \quad \leftrightarrow \quad \frac{z}{z-a}=\frac{1}{1-a z^{-1}}
$$

Relationship between ZT \& DTFT

If ROC includes the unit circle, then we can say that: $X(\Omega)=\left.X(z)\right|_{z=e^{j \Omega}}$
$X(\Omega)=$ "walk around the unit circle" and get $X(z)$ values
Surface Plot of $|X(z)|$

Explains why $X(\Omega)$ is periodic... Ω is an "angle around the unit circle"
\Rightarrow Once we've walked around the unit circle... going farther just repeats the values $X(z)$ that we are grabbing

Inverse Z-T

There is an integral inversion formula but it is not really used in practice!

$$
\Rightarrow \text { Use Partial Fraction Expansion (PFE) }
$$

The use of PFE here is almost exactly the same as for Laplace transforms that you may have seen before (and we'll see later).
... the only difference is that you first divide by z before performing the PFE... then after expanding you multiply by z to get the final expansion.

Example of Partial Fraction for Inverse ZT:

See Next Note Set for details on PFE

Suppose you want to find the inverse ZT of

$$
Y(z)=\frac{z+1}{z^{2}+\frac{3}{4} z+\frac{1}{8}}
$$

First divide $Y(z)$ by z to get: $\frac{Y(z)}{z}=\frac{z+1}{z^{3}+\frac{3}{4} z^{2}+\frac{1}{8} Z}$
Then use matlab's residue to do a partial fraction expansion on $Y(z) / z$

$[r, p, k]=\operatorname{residue}\left(\left[\begin{array}{lll}1 & \left.1],\left[\begin{array}{lll}1 & 0.75 & 0.125 \\ 0\end{array}\right]\right) & \\ r= & \mathrm{p}= & \mathrm{k}=[] \\ 4 & -0.5000 & \\ -12 & -0.2500 & \\ 8 & 0 & \\ \hline\end{array}\right.\right.$		

For each term:

Now... the point of dividing by z becomes clear... you get terms like this (with z's in the numerator)... and they are on the ZT table!!!

$$
\Rightarrow y[n]=4\left(-\frac{1}{2}\right)^{n} u[n]-12\left(-\frac{1}{4}\right)^{n} u[n]+8 \delta[n]
$$

A Few Properties of Bilateral ZT

Linearity: Same ideas as for CTFT and DTFT

There are several other properties... they are listed on the Table of \mathbf{Z} Transform Properties.

Time Shift

$$
\text { If } x[n] \leftrightarrow X(z), \quad \text { then } \quad x[n-q] \leftrightarrow z^{-q} X(z)
$$

Note: Here q can be positive or negative
"Proof": $\quad X(z)=\cdots+x[-2] z^{2}+x[-1] z^{1}+x[0] z^{0}+x[1] z^{-1}+x[2] z^{-2}+\cdots$

$$
Z\{x[n-2]\}=\cdots+x[-1-2] z^{1}+x[0-2] z^{0}+x[1-2] z^{-1}+x[2-2] z^{-2}+x[3-2] z^{-3}+\ldots
$$

$$
=\cdots+x[-3] z^{1}+x[-2] z^{0}+x[-1] z^{-1}+x[0] z^{-2}+x[1] z^{-3}+\ldots
$$

$$
=\cdots+x[-3] z^{-2} z^{3}+x[-2] z^{2} z^{2}+x[-1] z^{-2} z^{1}+x[0] z^{-2} z^{0}+x[1] z^{-2} z^{-1}+\ldots
$$ the \boldsymbol{z}^{2}

$$
=z^{-2}[\underbrace{\left.\cdots+x[-3] z^{3}+x[-2] z^{2}+x[-1] z^{1}+x[0] z^{0}+x[1] z^{-1}+\ldots\right]}_{=X(z)}]
$$

System Property

The output of a LTI DT system has ZT $Y(z)$ given by $Y(z)=X(z) H(z)$
So we have:

Note how similar this is to what we saw for DTFT:

Terminology

- Frequency Response: $H(\Omega)$
- Transfer Function: H(z)

