State University of New York

EECE 301
 Signals \& Systems Prof. Mark Fowler

Note Set \#26

- D-T Systems: Transfer Function and Frequency Response

Finding the Transfer Function from Difference Eq.

Recall: we found a DT system's freq. resp. $H(\Omega)$ by analyzing for input $e^{j \Omega n}$ or by taking DTFT of the Diff Eq. Here we can either analyze the system for input z^{n} or take the ZT of the Diff Eq... here we do the later:

From this $\boldsymbol{H}(\mathrm{z})$ we know how to compute the output: $\mathrm{y}=$ filter(b,a,x);

Poles and Zeros of Transfer Function

$$
H(z)=\frac{b_{0}+b_{1} z^{-1}+\ldots+b_{M} z^{-M}}{1+a_{1} z^{-1}+\ldots+a_{N} z^{-N}}
$$

$$
H(z)=z^{(N-M)} \frac{b_{0} z^{M}+b_{1} z^{M-1}+\ldots+b_{M}}{z^{N}+a_{1} z^{N-1}+\ldots+a_{N}}
$$

Define the polynomials $A(z)$ and $B(z)$ so that:

$$
H(z)=z^{(N-M)} \frac{B(z)}{A(z)}
$$

Assume there are no common roots in the numerator $B(z)$ and denominator $A(z)$.
(If not, assume they've been cancelled and redefine $B(z)$ and $A(z)$ accordingly)
Poles of $\boldsymbol{H}(\mathbf{z})$: The values on the complex z-plane where $|H(z)| \rightarrow \infty$
Zeros of $\boldsymbol{H}(\mathbf{z})$: The values on the complex z-plane where $|H(z)|=0$
The roots of the denominator polynomial $A(z)$ determine N poles.
The roots of the Numerator polynomial $B(z)$ determine M zeros.
The term $z^{(N-M)}$ gives poles/zeros at the origin according to:

- If $N>M: N-M$ zeros @ Origin
- If $N<M: M-N$ poles @ Origin

Example: Finding Poles and Zeros

Impulse Response of System

Sometimes looking at how a system responds to the impulse function (i.e., delta sequence) $\delta[n]$ can tell much about a system. Hitting a system with $\delta[n]$ is lot like ringing a bell to hear how it sounds...

Noting that the ZT of $\delta[n]=1$ and using the properties of the transfer function and the Z transform:
$h[n]=Z^{-1}\{H(z) Z\{\delta[n]\}\}$
$h[n]=Z^{-1}\{H(z)\}$
$h[n]=\operatorname{IDTFT}\{H(\Omega)\}$
From PFE and Poles/Zeros we see that a TF like this: $\quad H(z)=z^{(N-M)} \frac{B(z)}{A(z)}$...will have an impulse response with terms like this:

$$
h[n]=k_{1} p_{1}^{n} u[n]+k_{2} p_{2}^{n} u[n]+\cdots+k_{N} p_{N}^{n} u[n]
$$

Some simplifying assumptions made here!

Now... we almost always want this to decay (like a bell!): all poles $\left|p_{i}\right|<1$

Stability of System

Definition: A system is said to be stable if its output will never grow without bound when any bounded input signal is applied... and that seems like a good thing!!!

Without going into all the details... a system with an impulse response that decays "fast enough" is said to be stable.

From our exploration of the effect of poles on the impulse response we say that:

For a Stable System

- Poles must be "inside unit circle"
- Zeros can be anywhere

Relationship: Transfer Function and Freq. Resp.

Recall: DTFT = ZT evaluated on Unit Circle... if UC is inside ROC
Fact: For causal systems UC is inside ROC if all poles are inside UC

$$
H(\Omega)=\left.H(z)\right|_{z=e^{j \Omega}} \text { If all poles are inside the UC }
$$

We saw how to use freqz before to plot the Frequency Response... this just shows how to plot the Frequency Response from the Transfer Function coefficients:

$$
H(z)=\frac{b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+\ldots+b_{M} z^{-M}}{a_{0}+a_{1} z^{-1}+a_{2} z^{-2}+\ldots+a_{N} z^{-N}}
$$

Pick appropriate spacing
$\gg H=$ freqz(num, denom, omega)
>> plot(omega/pi, abs(H))
>> plot(omega/pi, angle(H))

Visualizing Relationship Between TF \& FR

Now... plot just those values on the unit circle:
Plot of Magnitude of $H(z)$ Only Showing Values on Unit Circle

Effect of Poles \& Zeros on Frequency Response of DT filters

Note: Including a pole or zero at the origin ...

(a)

...doesn't change the magnitude but does change the phase

(c)

Figure from B.P. Lathi, Signal Processing and Linear Systems

Cascade of Systems

Suppose you have a "cascade" of two systems like this:

Thus, the overall frequency response/transfer function is the product of those of each stage:

$$
\begin{aligned}
& H_{\text {total }}(\Omega)=H_{1}(\Omega) H_{2}(\Omega) \\
& H_{\text {total }}(z)=H_{1}(z) H_{2}(z)
\end{aligned}
$$

Obviously, this generalizes to a cascade of N systems:

$$
\begin{aligned}
& H_{\text {total }}(\Omega)=H_{1}(\Omega) H_{2}(\Omega) \cdots H_{N}(\Omega) \\
& H_{\text {total }}(z)=H_{1}(z) H_{2}(z) \cdots H_{N}(z)
\end{aligned}
$$

