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EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #26
• D-T Systems: Transfer Function and Frequency Response
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Finding the Transfer Function from Difference Eq.
Recall: we found a DT system’s freq. resp. H() by analyzing for input ejn  or by 
taking DTFT of the Diff Eq.  Here we can either analyze the system for input zn or 
take the ZT of the Diff Eq… here we do the later:
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So… can just 
write H(z) by 
inspection of 

D.E. coefficients!

From this H(z) we know how to compute the output:  y = filter(b,a,x);
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Poles and Zeros of Transfer Function
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Define the polynomials A(z) and B(z) so that:  ( ) ( )( )
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Assume there are no common roots in the numerator B(z) and denominator A(z).  
(If not, assume they’ve been cancelled and redefine B(z) and A(z)  accordingly) 

Poles of H(z): The values on the complex z-plane where |H(z)| 

Zeros of H(z): The values on the complex z-plane where |H(z)| = 0

The roots of the denominator polynomial A(z) determine N poles.

The roots of the Numerator polynomial B(z) determine M zeros.

The term z(N – M) gives poles/zeros at the origin according to:
• If  N > M :  N – M  zeros @ Origin
• If  N < M  :  M – N  poles @ Origin
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Conjugate 
PairUsing MATLAB:

>> zplane([2 1],[1 -(1/sqrt(2)) 1/4])

p =1 zero 
at origin 
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Example: Finding Poles and Zeros
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Impulse Response of System
Sometimes looking at how a system responds to the impulse function (i.e., 
delta sequence) [n] can tell much about a system.  Hitting a system with [n] 
is lot like ringing a bell to hear how it sounds…

LTI 
D-T system

ICs = 0
n

[n]
n

h[n]

Note: If system is causal, 
then h[n] = 0 for n < 0

The symbol h[n] means 
“the impulse response”.

Noting that the ZT of [n] = 1 and using the properties of the transfer function 
and the Z transform:
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From PFE and Poles/Zeros we see that a TF like this: 

…will have an impulse response with terms like this:
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Some simplifying 
assumptions 
made here!

Now… we almost always want this to decay (like a bell!): all poles |pi| < 1

 [ ] ( )h n IDTFT H 



6/11

Stability of System
Definition: A system is said to be stable if its output will never grow without 
bound when any bounded input signal is applied… and that seems like a good 
thing!!!

Without going into all the details… a system with an impulse response that 
decays “fast enough” is said to be stable.

From our exploration of the effect of poles on the impulse response we say that: 

For a Stable System

• Poles must be “inside unit circle”

• Zeros can be anywhere
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Relationship: Transfer Function and Freq. Resp.
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Recall:  DTFT = ZT evaluated on Unit Circle… if UC is inside ROC

Fact: For causal systems UC is inside ROC if all poles are inside UC
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omega -pi: ?:pi
H freqz(num, denom, omega)
plot(omega/pi, abs(H))
plot(omega/pi, angle(H))
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must put any zero bi into the vector

must put any zero ai into the vector

We saw how to use freqz before to plot the Frequency Response… this just shows 
how to plot the Frequency Response from the Transfer Function coefficients: 
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|H(z)|
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And we know that the 
Frequency Response is 
just the Transfer 
Function evaluated on 
the Unit Circle.
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Now… plot just those values on the unit circle:

This shows the Frequency Response 
H() where  is the angle around the 
unit circle… this explains why H() is 
a periodic function of 

Now…“Cut” here… 
and unwrap

This shows after it has been 
“cut and unwrapped”… and 
plotted on the  axis:
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Effect of Poles & Zeros on Frequency Response of DT filters

Figure from B.P. Lathi, Signal Processing and Linear Systems

Note: Including a 
pole or zero at the 
origin …

Placing a 
zero at … …makes 

|H()| = 0

Placing more 
zeros/poles…

…doesn’t change 
the magnitude but 
does change the 
phase

… gives sharper 
transitions.
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Cascade of Systems
Suppose you have a “cascade” of two systems like this:
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Thus, the overall frequency response/transfer function is the product of those 
of each stage:
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Obviously, this generalizes to a cascade of N systems:
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