
1/16

EECE 301
Signals & Systems
Prof. Mark Fowler

Note Set #29
• D-T Systems: FIR Filters

2/16

FIR Filters (Non-Recursive Filters)
FIR (Non-Recursive) filters are certainly the most widely used DT filters.

There are several reasons for this:
• Simple & effective design methods exist
• Designs are always stable (since only poles at origin)
• Linear phase designs can be easily achieved

So… it’s easy to
meet part of the
requirements for

ideal filters!
However, the only real downside of FIR filters is that they can be
computationally complex…

High-quality frequency response requires “long” filters (M > 100)
• That means your “computer” will have to a lot of computation

 M+1 Multiplies & M Additions

We’ll look at 3
methods

So… The goal in FIR
design is to get the Freq.

Resp. specs you want
with the smallest M!!!

3/16

FIR LPF Design – Windowed sinc Method (fir1)
mb

m
M

M/2

We looked at a truncated sinc as a way to design the bm:

But… we saw that this gave only mediocre designs…
… in particular, it gave poor stop-band performance.

We could use math to explain why but the reason is pretty easy to see by recalling
that the frequency response of an FIR filter is the DTFT of the bm coefficients:

0 1() { } ...j j M
m MH DTFT b b b e b e        

Now… we can reason that:
• The truncation causes

discontinuities at the edges
of the bm sequence

• Discontinuities (i.e., rapid
changes) require high
frequencies

• Thus… the poor stop-
band!!!

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

Normalized DT Frequency /

|H
(

)|(
dB

)

Red: M = 30
Blue: M = 120

4/16

This reasoning also gives us an idea as to how to fix it:
• Multiply the sinc-generated bm by a tapering “window”
• Then… we can try different shaped windows to see which is best

sinc

m
M

M/2

window

mMM/2

1
mb

mMM/2

MATLAB has a function that lets you easily design filters this way.

The command is called fir1 and here is how it is used:

>> b = fir1(M,omega_c,window(M+1,opt))

That’s a “one”

Filter “Order”

Normalized Cutoff
Frequency

between 0 & 1
Specified Window

(length = M+1)
Some have optional parameters!

fir1 has many other options and
can be used to design more than
just LPF… see MATLAB help.

5/16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-160

-140

-120

-100

-80

-60

-40

-20

0

20

Normalized DT Frequency /

|H
(

)|
 (d

B) Blue: No Window (Rectangle Win)
Red: “Hamming” Window
Green: Chebyshev 60 dB
Magenta: Chebyshev 100 dB

>> b_rect=fir1(30,0.6,rectwin(31));
>> b_hamm=fir1(30,0.6,hamming(31));
>> b_chebwin=fir1(30,0.6,chebwin(31,60));
>> b_cheb_100=fir1(30,0.6,chebwin(31,100));

Note: Putting 60 (dB) in here gets a
stopband of about -70dB

Note: Putting 100 (dB) in here gets a
stopband of about -120dB

A General Trend: For a fixed M… choosing the window to get more stopband
attenuation (good!) causes the transition band to widen (bad!!).

M = 30

6/16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

Normalized DT Frequency /

|H
(

)|
 (d

B)

A General Trend: For a fixed window… choosing Larger M narrows transition
band (GOOD!).

Window: Chebyshev 100 dB

So… the general design approach is “guided” trial and error:
• Pick window to get desired stopband level (Chebyshev window helps with this)
• Increase order (M = “order”) to get desired transition band width
• Note that passband is VERY flat (good!)

7/16

function b = fir2_min(nn, ff, aa)
% nn = order of the filter... must be an integer...
% Must be less than 1024!!!
% ff = row vector of frequency "break points" relative to 1 (which corresponds to Fs/2)
% First element MUST be 0. Last element MUST be 1. Elements must NOT decrease
% aa = row vector of amplitudes desired (last element MUST be 0)

% Work with filter length instead of filter order
nn = nn + 1; %% nn as imput was “order”… now nn is “length”

% Set some parameters needed
npt = 512; %%% npt sets the FFT size used.... This value is good as long as filter order < 1024
lap = fix(npt/25); % set # of points to use as transition band if no transition band is spec'd
wind = hamming(nn); % use Hamming window

%%% Convert from rows to columns
ff = ff'; aa = aa';

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

ff

aa aa = [1 1 0 0]
ff = [0 0.5 0.6 1]

FIR LPF Design – “Frequency Sampling” Method (fir2)
Still uses windowing of a non-causal impulse response…
But it comes from IFFTing a user specified a desired frequency response

This a simplified version of MATLAB’s fir2
command… the real one does not have this

constraint and has many options for the design

MATLAB’s fir2 command
allows any window

8/16

% The next few lines and the loop below interpolate breakpoints onto large grid for FFT...
H = zeros(1,npt);
nbrk=length(ff);
nint=nbrk-1;
df = diff(ff');
npt = npt + 1; % Length of [dc 1 2 ... nyquist] frequencies.
nb = 1;
H(1)=aa(1);
for i=1:nint

if df(i) == 0
nb = ceil(nb - lap/2);
ne = nb + lap;

else
ne = fix(ff(i+1)*npt);

end
if (nb < 0 || ne > npt)

error(generatemsgid('SignalErr'),'Too abrupt an amplitude change near end of frequency interval.')
end
j=nb:ne;
if nb == ne

inc = 0;
else

inc = (j-nb)/(ne-nb);
end
H(nb:ne) = inc*aa(i+1) + (1 - inc)*aa(i);
nb = ne + 1;

end

%% You now have magnitude interpolated onto a fine grid over the positive frequencies

0 100 200 300 400 500 600
0

0.5

1

Index of H

V
al

ue
 o

f H

9/16

%% Now want to apply a linear phase response over these positive frequencies. The phase slope is related to
%% amount of delay of filter.... the delay is what is needed to make the filter causal (the delay is half the order)

dt = 0.5 .* (nn - 1); % set delay to half the order (remember that nn is now length and order is length - 1)
rad = -dt .* sqrt(-1) .* pi .* (0:npt-1) ./ (npt-1); % create j*phi(n) that is a line with desired slope
H = H .* exp(rad); % multiply magnitude (H) by exp(j*phi(n)) to get mag & phase over positive frequencies

% Now...Append correct values for the negative frequencies.... remember that FT at negative frequencies is just
% conjugate of at positive freqs Also... since you are putting them "above" the positive freqs things have
% to "run backwards"... They go "above" because we won't use fftshift when we do the ifft

H = [H conj(H(npt-1:-1:2))];

0 200 400 600 800 1000 1200
0

0.5

1

Index of H

A
bs

 V
al

ue
 o

f H

0 200 400 600 800 1000 1200
-4

-2

0

2

4

Index of H

A
ng

le
 o

f H

Linear phase… but
“wrapped” between - & 

10/16

%%% OK... now have the frequency response spec'd at all freqs on a fine grid and the ordering is positive freqs
%% first then negative freqs.... and we are all set for using ifft without fftshift

ht = real(ifft(H)); %%% technically don't need the real() operation but...
%% roundoff causes the imaginary part to be non-zero (but small!) so.... apply real() just to be sure

%%% Now you've got an imp. Resp. but it is much longer than desired... so extract the first nn points:

b = ht(1:nn);

%%% But that abrupt truncation can cause some problems with the resulting frequency response
%% So we apply a window to smooth the
%%% discontinuities at the edges:

b = b .* wind(:).'; % Apply window.

To see the designed filter's
frequency response:
>> [H,w] = freqz(b,1,8192);
>> plot(w/pi,20*log10(abs(H)))

0 200 400 600 800 1000 1200
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Index of ht

V
al

ue
 o

f h
t

0 5 10 15 20 25 30 35
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Index of b

V
al

ue
 o

f b

0 5 10 15 20 25 30 35
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Index of b

V
al

ue
 o

f b

11/16

B = fir2(M,[0 0.3 0.31 1],[1 1 0 0],chebwin(M+1,60));

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-120

-100

-80

-60

-40

-20

0

Normalized DT Frequency /

|H
(

)|(
dB

)

M = 30
M = 60

M = 120
M = 220

Just because you ASK for a specific transition band does not mean you’ll get it!!!

You have to ensure you make your filter long enough to get it!

Longer filter gives
better passband edge

12/16

0 0.2 0.4 0.6 0.8 1
0

5

10

Normalized DT Frequency /

|H
(

)|
(n

on
-d

B
)

One advantage of fir2 over fir1: it is easy to get very non-standard filter shapes!!

B = fir2(220,[0 0.4 0.6 0.7 0.8 1],[0.01 10 0 0 1 1],chebwin(221,60));

Remember… these are non-dB values!

Note: When the last element of aa is non-zero (e.g. for highpass) then the order
MUST be specified as being even!!!

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-160

-140

-120

-100

-80

-60

-40

-20

0

20

Normalized DT Frequency /

|H
(

)|(
dB

)

B = fir2(220,[0 0.3 0.4 0.7 0.8 1],[1 1 0.1 0.1 0 0],chebwin(221,60));

13/16

FIR LPF Design – Parks-McClellan (firpm)
This method is also called “Optimal Equiripple Design”

Unlike the other two methods the math here is quite complex… so we won’t study
HOW it does it but only how to apply it

This design method is pretty much the standard for FIR design these days,

Recall our earlier
visualization of how
we specify a lowpass
filter.

firpm and an
auxilliary command
allow us to specify
our desire for these
parameters and
then design a filter
to meet them!

14/16

% Lowpass Filter Design Specifications:
% Passband cutoff frequency = 0.3 rad/sample
% Stopband cutoff frequency = 0.31 rad/sample
% · At least 60 dB of stopband attenuation
% · No more than 1 dB passband ripple

rp=1; rs=60; % specify passband ripple & stopband attenuation in dB
f_spec=[0.3 0.31]; % specify passband and stopband edges in normalized DT freq
AA=[1 0]; %%% specfies that you want a lowpass filter
dev=[(10^(rp/20)-1)/(10^(rp/20)+1) 10^(-rs/20)]; % parm. needed by design routine
Fs=2; % “Fake” value for Fs so our design is done in terms of normalized DT freq

[N,fo,ao,w]=firpmord(f_spec,AA,dev,Fs);
% estimates filter order and gives other parms needed to run firpm

b=firpm(N,fo,ao,w); % Computes the designed filter coefficients in vector b

Same as the LPF we
designed using fir2

About what we got
for our fir2 LPF

Our fir2 design gave
much lower PBR!!!

The resulting value for the order for this design is 385!!

15/16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-160

-140

-120

-100

-80

-60

-40

-20

0

Normalized DT Frequency /

|H
(

)|
(d

B
)

firpm design
Order = 385

fir2 design
Order = 385

0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32

-35

-30

-25

-20

-15

-10

-5

0

5

Normalized DT Frequency /

|H
(

)|
(d

B
)

firpm design has 1 dB of ripple.
Could reduce spec… but would

need longer filter. E.g., for rp = 0.1
we’d get Order = 544

firpm can design outstanding
filters… but for the most
stringent design specs they can
be VERY long!

16/16

Let’s look at pole-zero plot for a simpler firpm-designed filter…

>> zplane(b,1)

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

-1

-0.5

0

0.5

1

28

Real Part

Im
ag

in
ar

y
P

ar
t

In Stopband: zeros placed right on UC
In Passband: zeros “line” the UC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-80
-60
-40
-20

0

Normalized DT Frequency /

|H
(

)|
(d

B
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-30

-20

-10

0

Normalized DT Frequency /

<H
(

)
ra

di
an

s Linear Phase…
all designs by
firpm have this
very desirable
trait!!!

