
1/11

EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #30
• D-T Systems: IIR Filters
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IIR Filters (Recursive Filters)
IIR (Recursive) filters have two issues that constrain their use… 

1. They do not have linear phase (can get approx. linear phase w/ special designs)
• linear phase is more crucial in certain areas…like digital comm & radar 

(which involve pulses) or filtering images (which involves edges).  
2. May not be inherently stable (feedback gives poles other than at origin)

• This can be a serious issue when implementing IIR filters

IIR Filters have one main advantage over FIR filters:
• can get good magn. resp. w/o high computational complexity

You can usually get 
quite good filters even 
with fairly low orders 

(like 10 or so).
Feedback 
Terms!
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Order 7 “Ellipical” IIR Design

Order 54 firpm FIR Design

This IIR requires:
• 15 multiplies
• 13 additions

This FIR requires:
• 55 multiplies
• 54 additions

Almost 4x as much computation for the FIR filter!

Complexity Comparison: IIR vs FIR
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[b,a]=cheby2(7,60,0.7);
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b = [0.0692    0.3789    0.9728    1.5028    1.5028    0.9728    0.3789    0.0692]

a = [1.0000    1.2028    1.6599    1.0991    0.6240    0.2098    0.0473    0.0048]
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MATLAB-Based IIR Design
MATLAB has several easy commands for IIR design, including:

• butter, cheby1, cheby2, ellip
Sets Order

Sets Stopband Height

Sets Stopband Edge

Chebyshev IIR
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[b,a] = ellip(7,0.1,60,0.5);

Sets Order

Sets Passband Ripple

Sets Passband Edge

Sets Stopband Height
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b = [0.0338    0.1302    0.2821    0.4013    0.4013    0.2821    0.1302    0.0338]

a = [1.0000   -0.8994    2.1386   -1.5364    1.4793   -0.7327    0.3178   -0.0725]

Elliptical IIR
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[b,a] = butter(7,0.5);

Sets Order

Sets Passband Edge 

a = [1.0000   -0.0000    0.9200   -0.0000    0.1927   -0.0000    0.0077   -0.0000]

b = [0.0166    0.1160    0.3479    0.5798    0.5798    0.3479    0.1160    0.0166]
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Butterworth IIR
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Visualizing IIR Freq Resp.

Closer the poles are to the UC the 
more pronounced are the peaks
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Effect of Poles & Zeros on Frequency Response of DT filters

Figure from B.P. Lathi, Signal Processing and Linear Systems

Note: Including a 
pole or zero at the 
origin …

Placing a zero 
on UC… 

…makes |H| = 0 
at angle where 
zero is placed

Placing more 
zeros/poles…

…doesn’t change 
the magnitude but 
does change the 
phase

… gives sharper 
transitions.
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Effect of Zero at Origin
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H1(z) has an extra zero at the origin:
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Effect of Pole at Origin
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H1(z) has an extra pole at the origin:
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Effect of Feedback
We know two important things:

• Feedback is what can give us poles other than at the origin
• Any pole outside the UC causes the system to be unstable

Thus…. It is feedback that can cause a system to be stable.
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So… if a is increased to be 1 
or larger then the system is 
unstable!
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Effect of Changing Value of a (with  = /4):
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a = 0.9
As a increases spike becomes:

Higher,     
Sharper,     
Closer to .

Effect of Changing Value of  (with a = 0.75):
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As  increases spike: 
Moves up in freq.,     
Becomes Higher.

WHY???


