State University of New York

EECE 301 Signals \& Systems Prof. Mark Fowler

Note Set \#31

- D-T Convolution: The Tool for Finding the Zero-State Response

Recall: Impulse Response

Earlier we introduced the concept of impulse response...
...what comes out of a system when the input is an impulse (delta sequence)

Noting that the ZT of $\delta[n]=1$ and using the properties of the transfer function and the Z transform we said that
$h[n]=Z^{-1}\{H(z) Z\{\delta[n]\}\}$
$h[n]=Z^{-1}\{H(z)\}$
$h[n]=\operatorname{IDTFT}\{H(\Omega)\}$
So...once we have either $H(z)$ or $H(\Omega)$ we can get the impulse response $h[n]$
Since $H(\mathrm{z}) \& H(\Omega)$ describe the system so must the impulse response $h[n]$
How???

Convolution Property and System Output
Let $x[n]$ be a signal with DTFT $X(\Omega)$ and ZT of $X(z)$
Consider a system w/ freq resp $H(\Omega)$ \& trans func $H(z) \quad \begin{aligned} & h[n] \leftrightarrow H(\Omega) \\ & h[n] \leftrightarrow H(z)\end{aligned}$
We've spent much time using these tools to analyze system outputs this way:

$$
\begin{aligned}
& Y(\Omega)=H(\Omega) X(\Omega) \leftrightarrow \quad y[n]=D^{2} T^{-1}\{H(\Omega) X(\Omega)\} \\
& Y(z)=H(z) X(z) \leftrightarrow \quad y[n]=Z^{-1}\{H(z) X(z)\}
\end{aligned}
$$

The convolution property of the DTFT and ZT gives an alternate way to find $y[n]$:

$$
\operatorname{DTFT}^{-1}\{X(\Omega) H(\Omega)\}=x[n] * h[n]
$$

$$
Z^{-1}\{X(z) H(z)\}=x[n] * h[n]
$$

$$
x[n] * h[n]=\sum_{m=-\infty}^{\infty} x[m] h[n-m]
$$

"Convolving"
 input $x[n]$ with the impulse response $h[n]$ gives the output $y[n]$!

Convolution for Causal System \& with Causal Input

An arbitrary LTI system's output can be found using the general convolution form:

$$
y[n]=\sum_{m=-\infty}^{\infty} x[m] h[n-m]
$$

General LTI System

If the system is causal then $h[n]=0$ for $n<0 \ldots$ Thus $h[n-m]=0$ for $m>n \ldots$ so:

$$
y[n]=\sum_{m=-\infty}^{n} x[m] h[n-m]
$$

Causal LTI System

If the input is causal then $x[n]=0$ for $n<0 \ldots$ so:

$$
y[n]=\sum_{m=0}^{\infty} x[m] h[n-m]
$$

Causal Input \& General LTI System

If the system $\&$ signal are both causal then

$$
y[n]=\sum_{m=0}^{n} x[m] h[n-m]
$$

Causal Input \& Causal LTI System

Convolution Properties (can sometimes exploit to make things easier)

1.Commutativity

$$
x[n] * h[n]=h[n] * x[n]
$$

$$
\sum_{m=-\infty}^{\infty} x[m] h[n-m]=\sum_{m=-\infty}^{\infty} n[m] \times[n-m]
$$

$$
=\xrightarrow{h[n]} x[n] \xrightarrow{y[n]}
$$

This is obvious from the frequency domain (or z domain) viewpoint:

$$
x[n] * h[n]=h[n] * x[n] \square X(\Omega) H(\Omega)=H(\Omega) X(\Omega)
$$

2. Associativity

$$
\left(x[n] * h_{1}[n]\right) * h_{2}[n]=x[n] *\left(h_{1}[n] * h_{2}[n]\right)
$$

\Rightarrow Can combine cascade into single equivalent system

This is obvious from the frequency domain (or z domain) viewpoint:

$$
\left[X(\Omega) H_{1}(\Omega)\right] H_{2}(\Omega)=X(\Omega)\left[H_{1}(\Omega) H_{2}(\Omega)\right], \quad \begin{aligned}
& \text { Tells us what the Freq } \\
& \text { Resp is for a cascade }
\end{aligned}
$$

Associativity together with commutativity says we can interchange the order of two cascaded systems:

Warning: This holds in theory but in practice there may be physical issues that prevent this!!!
3. Distributivity $\quad x[n] *\left(h_{1}[n]+h_{2}[n]\right)=x[n] * h_{1}[n]+x[n] * h_{2}[n]$
\Rightarrow can combine sum of two outputs into a single system (or vice versa)

$=\xrightarrow{x[n]} h_{1}[n]+h_{2}[n] \longrightarrow$

With commutativity this says we can split a complicated input into sum of simple ones... which is nothing more than "linearity"!!

Graphical Convolution - To Visualize \& Test Real Systems

Can do convolution this way when signals are know numerically or by equation

- Convolution involves the sum of a product of two signals: $x[i] h[n-i]$
- At each output index n, the product changes

Step 1: Write both as functions of $i: x[i] \& h[i]$

Step 2: Flip $h[i]$ to get $h[-i]$ (The book calls this "fold")

(Note: positive n gives right shift!!!!)
Step 4: Form product $x[i] h[n-i]$ and sum its elements to get the number $y[n]$

Example of Graphical Convolution

Solution

For this problem I choose to flip $x[n]$
My personal preference is to flip the shorter signal although I sometimes don't follow that "rule"... only through lots of practice can you learn how to best choose which one to flip.

Step 1: Write both as functions of $i: x[i] \& h[i]$

Step 2: Flip $x[i]$ to get $x[-i]$
"Commutativity" says we can flip either $x[i]$ or $h[i]$ and get the same answer... Here I flipped $x[i]$

We want a solution for $n=\ldots-2,-1,0,1,2, \ldots$ so must do Steps $3 \& 4$ for all n.
But... let's first do: Steps $3 \& 4$ for $\boldsymbol{n}=\mathbf{0}$ and then proceed from there.
Step 3: For $\underline{n=0}$, shift by n to get $x[n-i]$
For $n=0$ case there is no shift! $x[0-i]=x[-i]$
$x[0-i]=x[-i]$

Step 4: For $\underline{\boldsymbol{n}=\mathbf{0}}$, Form the product $x[i] h[\mathrm{n}-i]$ and sum its elements to give $y[n]$

Sum over $\boldsymbol{i} \Rightarrow \quad y[0]=6$

Steps $3 \& 4$ for all $n<0$

Step 3: For $\underline{n<0}$, shift by n to get $x[n-i]$ Negative n gives a left-shift

Step 4: For $\underline{\boldsymbol{n}<\mathbf{0}}$, Form the product $x[i] h[\mathrm{n}-i]$ and sum its elements to give $y[n]$

So... what we know so far is that: $y[n]= \begin{cases}0, & \forall n<0 \\ 6, & n=0\end{cases}$

So now we have to do Steps $3 \& 4$ for $n>0 \ldots$

Steps 3\&4 for $\boldsymbol{n}=1$

Step 3: For $\underline{n=1}$, shift by n to get $x[n-i] \longleftarrow$ Positive n gives a Right-shift

Step 4: For $\underline{n=1}$, Form the product $x[i] h[n-i]$ and sum its elements to give $y[n]$

Steps 3\&4 for $\boldsymbol{n}=2$

Step 3: For $\underline{n=2}$, shift by n to get $x[n-i] \longleftarrow$ Positive n gives a Right-shift

Step 4: For $\underline{n=2}$, Form the product $x[i] h[n-i]$ and sum its elements to give $y[n]$

Steps 3\&4 for $\boldsymbol{n}=3$

Step 3: For $\underline{n=3}$, shift by n to get $x[n-i] \longleftarrow$ Positive n gives a Right-shift

Step 4: For $\underline{n=3}$, Form the product $x[i] h[n-i]$ and sum its elements to give $y[n]$

Steps $3 \& 4$ for $n=4$

Step 3: For $\underline{n=4}$, shift by n to get $x[n-i] \longleftarrow$ Positive n gives a Right-shift

Step 4: For $\underline{n=4}$, Form the product $x[i] h[n-i]$ and sum its elements to give $y[n]$

Steps 3\&4 for $\boldsymbol{n}=\mathbf{5}$

Step 3: For $\underline{n=5}$, shift by n to get $x[n-i] \longleftarrow$ Positive n gives a Right-shift

Step 4: For $\underline{n=5}$, Form the product $x[i] h[n-i]$ and sum its elements to give $y[n]$

Steps 3\&4 for $\boldsymbol{n}=\mathbf{6}$

Step 3: For $\underline{n=6}$, shift by n to get $x[n-i] \longleftarrow$ Positive n gives a Right-shift

Step 4: For $\underline{\boldsymbol{n}=6}$, Form the product $x[i] h[n-i]$ and sum its elements to give $y[n]$

Steps $3 \& 4$ for all $\boldsymbol{n}>\mathbf{6}$

Step 3: For $\underline{n>6}$, shift by n to get $x[n-i]$
Positive n gives a Right-shift

Step 4: For $\underline{\boldsymbol{n}>6}$, Form the product $x[i] h[n-i]$ and sum its elements to give $y[n]$

So... now we know the values of $y[n]$ for all values of n
We just need to put it all together as a function...
Here it is easiest to just plot it... you could also list it as a table.

Note that convolving these kinds of signals gives a "ramp-up" at the beginning and a "ramp-down" at the end.

Various kinds of "transients" at the beginning and end of a convolution are common.

BIG PICTURE: So... what we have just done is found the zero-state output of a system having an impulse response given by this $h[n]$ when the input is given by this $x[n]$:

Link: Web Demos of Graphical D-T Convolution

This is a good site that provides insight into how to visualize D-T convolution...

However, be sure you can do graphical convolution by hand without the aid of this site!!

Connection to FIR Filters

Consider a D-T system with impulse response $h[n]$ that has finite duration... and set an FIR filter's coefficients equal to them: $\mathrm{b}_{0}=h[0] \quad \mathrm{b}_{1}=h[0] \ldots \mathrm{b}_{M}=h[M]$

