State University of New York

# EECE 301 <br> Signals \& Systems Prof. Mark Fowler 

## Note Set \#36

- C-T Systems: Bode Plots


## What are Bode Plots?

"Bode Plot" = Freq. Resp. plotted with $|H(\omega)|$ in dB on a log frequency axis.

Its easy to use computers to make Bode plots... we already saw that!

- Use MATLAB's freqs command

```
But good engineers need insight to:
- understand the results of an analysis
- make decisions for design
```

Learning how to make "by hand"
a Bode magnitude plot will help give you the needed insight!

## Key Idea of the Method

Consider a Freq Resp Magntiude factored into terms of its poles and zeros...

$$
|H(\omega)|=\frac{|K|\left|j \omega-z_{1}\right|\left|j \omega-z_{2}\right| \cdots\left|(j \omega)^{2}+\left(2 \zeta_{1} \omega_{n, 1}\right) j \omega+\omega_{n, 1}^{2}\right|}{\left|j \omega-p_{1}\right|\left|j \omega-p_{2}\right| \cdots\left|(j \omega)^{2}+\left(2 \zeta_{2} \omega_{n, 2}\right) j \omega+\omega_{n, 2}^{2}\right|} \quad \begin{aligned}
& \begin{array}{l}
\text { Complex conjugate } \\
\text { roots are kept together }
\end{array}
\end{aligned}
$$

Convert to dB form and use log property:
( dB converts multiplications to additions!)

$$
\begin{aligned}
& \log (a b)=\log (a)+\log (b) \\
& \log (a / b)=\log (a)-\log (b)
\end{aligned}
$$

$20 \log _{10}|H(\omega)|=$

$$
20 \log _{10}|K|+20 \log _{10}\left|j \omega-z_{1}\right|+\cdots+20 \log _{10}\left|(j \omega)^{2}+\left(2 \zeta_{1} \omega_{n, 1}\right) j \omega+\omega_{n, 1}^{2}\right|
$$

$$
-20 \log _{10}\left|j \omega-p_{1}\right|-\cdots-20 \log _{10}\left|(j \omega)^{2}+\left(2 \zeta_{2} \omega_{n, 2}\right) j \omega+\omega_{n, 2}^{2}\right|
$$

So... Key Idea is that we have a sum of terms and only need to figure out two things:

1. What does each of these terms look like?
2. How do we add them together?

## One Little Trick First

Complex conjugate roots are kept together

After factoring: $\quad H(s)=\frac{K s(s+2)\left(s+10,\left(s^{2}+60 s+40,000\right)\right.}{(s+5)\left(s+20\left(s^{2}+6 s+6,400\right)\right.}$
Note zero at origin (might not have one... Or could be pole at origin)

Our trick is to pull out "constants" for each term (except a pole or zero @ origin)... like this:
$H(s)=\left[\frac{K \times 2 \times 10 \times 40,000}{5 \times 20 \times 6,400}\right] \frac{s(s / 2+1)(s / 10+1)\left[(s / 200)^{2}+(60 / 40,000) s+1\right]}{(s / 5+1)(s / 20+1)\left[(s / 80)^{2}+(6 / 6,400) s+1\right]}$
$H(\omega)=\left[\frac{K \times 2 \times 10 \times 40,000}{5 \times 20 \times 6,400}\right] \frac{j \omega(j \omega / 2+1)(j \omega / 10+1)\left[(j \omega / 200)^{2}+(60 / 40,000) j \omega+1\right]}{(j \omega / 5+1)(j \omega / 20+1)\left[(j \omega / 80)^{2}+(6 / 6,400) j \omega+1\right]}$

The whole point of doing this is so that each term (once in $\mathbf{d B}$ form) is at 0 dB at low frequecies... this will make it easy to add the dB terms together!

## What the Terms Look Like Plotted

$20 \log _{10}|K|$

Just a constant... Flat Plot
$\pm 20 \log _{10}\left|(j \omega)^{n}\right|$ An $n^{\text {th }}$ order Pole/Zero @ Origin (Plot shown for $n=2$ )

$\pm 20 \log _{10}|j \omega / a+1|$
$1^{\text {st }}$ order Pole/Zero @ a

## Straight-Line Approx

Flat at 0 dB until $\omega=a$ Then "break" to a slope of $\pm 20 \mathrm{~dB} / \mathrm{dec}$

$\pm 20 \log _{10}\left|\left(j \omega / \omega_{n}\right)^{2}+\left(2 \zeta_{1} / \omega_{n}\right) j \omega+1\right|$
$2^{\text {nd }}$ order Pole/Zero @ $\omega_{n}$
40

## Straight-Line Approx Flat at 0 dB until $\omega=\omega_{n}$ Then "break" to a slope of $\pm 40 \mathrm{~dB} / \mathrm{dec}$

$$
\begin{array}{r}
20 \\
0 \\
-20 \\
-40
\end{array}
$$

## What This Does For Us...

Notice that the $1^{\text {st }}$ and $2^{\text {nd }}$ Order Non-Origin terms contribute nothing (i.e., they add 0 dB ) at frequencies below their "break points"

So... if we start below all break points it is as if these terms don't exist...
So... if we start plotting at a low enough frequency all we have to do is plot the effect of the constant term and any origin-located poles/zeros (if any exist).

Then... as we go up in frequency... at each break point we change the slope by the amount of slope the new term provides!

```
Sum of two Lines has Slope
    equal to Sum of Slopes!
```


## General Steps to "Sequentially" Build Bode Plots

1. Factor $H(s) . .$. leave complex-root terms as quadratics
2. Convert to j $\omega$ form
3. Pull out "constants" into a "gain" term
4. Combine constant term with " $j \omega$ " terms (if any)
5. Identify "break points" and put in ascending order
6. Plot constant term with " $j \omega$ " terms at $\omega$ values below the lowest "break point"
7. At "break point", change slope by $\pm 20 \mathrm{~dB} /$ decade or $\pm 40 \mathrm{~dB} /$ decade for $1^{\text {st }}$ order or $2^{\text {nd }}$ order terms, repectively.

- Repeat this step through ordered list of "breakpoints".

8. Make "resonant corrections" for "under damped" $2^{\text {nd }}$ order terms (i.e. when $\zeta<0.5$ ).

Example $H(s)=\frac{0.1 s^{3}+25 s^{2}+1000 s}{s^{3}+4 s^{2}+104 s+200}$

## 1. Factor:

2. Convert to $\boldsymbol{j} \omega$ :


$$
\begin{aligned}
& s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2} \\
& \omega_{n}=10 \Rightarrow 2 \zeta \omega_{n}=2 \\
& \quad \Rightarrow \zeta=0.1
\end{aligned}
$$

$$
H(\omega)=\frac{0.1 j \omega(j \omega+50)(j \omega+200)}{(j \omega+2)\left((j \omega)^{2}+2 j \omega+100\right)}
$$

3. Pull Out "Constants": $\quad H(\omega)=\frac{0.1 j \omega(j \omega+50)(j \omega+200)}{(j \omega+2)\left((j \omega)^{2}+2 j \omega+100\right)}$
$H(\omega)=\underbrace{\frac{0.1 \times 50 \times 200}{2 \times 100}}_{=5}\left[\frac{j \omega(1+j \omega / 50)(1+j \omega / 200)}{(1+j \omega / 2)\left(1+2 j \omega / 100+(j \omega / 10)^{2}\right)}\right]$

## 4. Combine gain term with $\boldsymbol{j} \omega$ term :

$$
H(\omega)=\left[\frac{(5 j \omega)(1+j \omega / 50)(1+j \omega / 200)}{(1+j \omega / 2)\left(1+2 j \omega / 100+(j \omega / 10)^{2}\right)}\right]
$$

## 5. Identify Breakpoints and List in Ascending Order:

$$
H(\omega)=\left[\frac{(5 j \omega)(1+j \omega / 50)(1+j \omega / 200)}{(1+j \omega / 2)\left(1+2 j \omega / 100+\left(j \omega / 100^{2}\right)\right.}\right]
$$

List breakpoints in ascending order:

| Break Points | Change in slope |
| :---: | :--- |
| 2 |  |
| 10 | $-20 \mathrm{~dB} /$ decade $-1^{\text {st }}$ order term in denominator |
| 50 | $-40 \mathrm{~dB} /$ decade $-2^{\text {nd }}$ order term in denominator |
| 200 | $+20 \mathrm{~dB} /$ decade $-1^{\text {st }}$ order term in numerator |
|  | $+20 \mathrm{~dB} /$ decade $-1^{\text {st }}$ order term in numerator |

## 6. Plot constant term with " $j \omega$ " terms at $\omega$ values below the lowest "break point" :

$$
H(\omega)=\left[\frac{(5 j \omega)(1+j \omega / 50)(1+j \omega / 200)}{(1+j \omega / 2)\left(1+2 j \omega / 100+(j \omega / 10)^{2}\right)}\right]
$$

-Evaluate $|5 j \omega|$ in dB at $\omega$ value that is (at least) 1 decade below the lowest BP (Here used $\omega=0.1$ which is more than a decade below 2 ):

$$
20 \log _{10}(5 \times 0.1)=20 \log _{10}(0.5)=-6 d B
$$

-Plot a point at -6 dB at $\omega=0.1$
-Draw a line of slope $+20 \mathrm{~dB} /$ decade from this point up to the first
BP

```
It is + slope because here the
    j\omega term is in numerator
It would be - slope if it were
    in the denomator
It is 20 dB slope because here
    there is a first order j }\omega\mathrm{ term
    It would be px20 slope if it
        were (j\omega)p
```

7. At "break point", change slope by $\pm 20 \mathrm{~dB} /$ decade or $\pm 40 \mathrm{~dB} /$ decade for 1st order or 2nd order terms, repectively. :

| Break Points |  | Change in slope |
| :---: | :--- | :--- |
|  |  |  |
| 10 |  | $-40 \mathrm{~dB} /$ decade $-1^{\text {st }}$ ordec term in denominator $-2^{\text {nd }}$ order term in denominator |
| 50 |  | $+20 \mathrm{~dB} /$ decade $-1^{\text {st }}$ order term in numerator |
| 200 |  | $+20 \mathrm{~dB} /$ decade $-1^{\text {st }}$ order term in numerator |

8. Make "resonant corrections" for "under damped" 2nd order terms (i.e. when $\zeta$ < 0.5). :
Finally: Make adjustment for the $\zeta$ value from the plot of the $2^{\text {nd }}$ order term: $\zeta=0.1$ gives peak $\approx 14 \mathrm{~dB}$ up

| $\zeta$ value | $\underline{\text { Adjustment }}$ |
| :---: | :---: |
| 0.1 | 14 dB |
| 0.2 | 8 dB |
| 0.3 | 5 dB |
| 0.4 | 3 dB |
| 0.5 | 1 dB |

Approximate Bode Plot for Example in Notes


Exact Bode Plot for Example


14/14

