State University of New York

EECE 301
 Signals \& Systems Prof. Mark Fowler

Note Set \#37

- C-T Systems: Using Bode Plots

Bode Plot Ideas Can Help Visualize What Circuits Do...

RC Lowpass Filter

$$
H(s)=\frac{1}{1+R C s}=\frac{1 / R C}{s+1 / R C}
$$

$$
H(\omega)=\frac{1}{1+j R C \omega}
$$

RC Highpass Filter

$$
H(s)=\frac{R C s}{1+R C s}=\frac{s}{s+1 / R C}
$$

RLC Bandpass Filter

$$
H(s)=\frac{2 \zeta \omega_{n} s}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

$$
H(s)=\frac{2 \zeta \omega_{n} s}{(s+a)^{2}}
$$

$$
H(s)=\frac{2 \zeta \omega_{n} s}{(s+a)(s+b)}
$$

A Better Bandpass Filter? Suppose you want a BPF.... with faster "rolloff"!

Need an s^{2} term in the numerator!
At ω_{1} we need to change slope by $\mathbf{- 4 0} \mathrm{dB} / \mathrm{dec} .$. So need double pole @ ω_{1} ! At ω_{2} we need to change slope by $\mathbf{- 4 0} \mathbf{d B} / \mathrm{dec} .$. So need double pole @ ω_{2} !
$\square H(s)=\frac{K s^{2}}{\left(s+\omega_{1}\right)^{2}\left(s+\omega_{2}\right)^{2}}$ There are (at least) three ways to get this!

$$
H(s)=\left[\frac{K_{1} s}{\left(s+\omega_{1}\right)\left(s+\omega_{2}\right)}\right]\left[\frac{K_{2} s}{\left(s+\omega_{1}\right)\left(s+\omega_{2}\right)}\right]
$$

$$
H(s)=\left[\frac{K_{1} s}{\left(s+\omega_{1}\right)^{2}}\right]\left[\frac{K_{2} s}{\left(s+\omega_{2}\right)^{2}}\right]
$$

Same exact circuits... just different choices of RLC!!!

$$
\begin{aligned}
& \text { HPF RLC w/ } \\
& \text { LPF RLC w/ } \\
& \text { Rep. poles } \\
& \text { Rep. poles }
\end{aligned}
$$

Looks like we could just cascade two of our RLC circuits... Here we cascade BPFs.

Our "cascade theory" only holds when attaching the $2^{\text {nd }}$ system does not change how the first one behaves!
Although TF Theory says this will work... the problem is that the second circuit "Loads" the first one!!!
So... one approach would be to re-analyze this cascade and see if it will still work but with some "tweeks" on the component choices.

Another approach is to use an op amp as a "buffer" between the stages!

Remember... there are two ways to choose the components here:

1. Each stage has repeated poles
2. Each stage has distinct poles

Another way to make a better BPF:

Here we must choose the components so that each stage has repeated poles.

Although these ideas lead to workable circuits they are not necessarily the best... For one thing... they need inductors (which are big and can't be made in an IC!) There are other forms... See this link for the form used below.
http://pdfserv.maxim-ic.com/en/an/AN1795.pdf

Design Example using Bode Plot Insight

Suppose you want to build a "treble booster" for an electric guitar.
You decide that something like this might work:

The A string on a guitar has a fundamental frequency of $110 \mathbf{~ H z}$ The A note on $17^{\text {th }}$ fret of the high-E string has a fundamental frequency of $\mathbf{8 8 0} \mathbf{~ H z}$

From our Bode Plot Insight... we know we can get this from a single real pole, single real zero system... with the "zero first, then the pole":

$$
H(s)=\frac{\left(1+s / \omega_{1}\right)}{\left(1+\mathrm{s} / \omega_{2}\right)} \Rightarrow H(\omega)=\frac{\left(1+j \omega / \omega_{1}\right)}{\left(1+j \omega / \omega_{2}\right)} \quad \text { with: } \omega_{1}=628 \mathrm{rad} / \mathrm{s}, ~ \omega_{2}=6280 \mathrm{rad} / \mathrm{s}
$$

Now, how do we get a circuit to do this? Let's explore!

A series combination

...has impedance $Z(s)=R+1 / C s$

Note: we could get $R+s L$ with an inductor but inductors are generally avoided when possible

So what do we get if we could some how form a ratio of such impedances?

$$
\begin{gathered}
\frac{Z_{1}(s)}{Z_{2}(s)}=\frac{R_{1}+1 / C_{1} s}{R_{2}+1 / C_{2} s}=\frac{C_{2}}{C_{1}} \underbrace{C_{1}\left(s R_{1} C_{1}+1\right)}_{\text {Aha!!! What we want! }} \frac{\left(s R_{2} C_{2}+1\right)}{}
\end{gathered}
$$

$$
\begin{array}{r}
\Rightarrow \text { Let }: \omega_{1}=1 / R_{1} C_{1} \\
\omega_{2}=1 / R_{2} C_{2}
\end{array} \quad \square \quad \frac{Z_{1}(\omega)}{Z_{2}(\omega)}=\frac{C_{2}}{C_{1}} \frac{\left(1+j \omega / \omega_{1}\right)}{\left(1+j \omega / \omega_{2}\right)}
$$

Okay...how do we build a circuit that has a transfer function

 that is a ratio of impedances?! Recall the op-amp inverting amplifier!

Extending the analysis to include impedances we can show that:

Now, you can choose the R's \& C’s to give the desired frequency points

But wait!! You then remember that op amps must always have negative feedback at DC so putting C_{f} here is not a good idea...

So we have to continue...
We also might not like this circuit because it might not give us a very large input impedance... and that might excessively "load" the circuit that you plug into this (e.g., the guitar)

Back to the drawing board!!!

Okay, then you remember there is also Non-Inverting Op-Amp circuit...

Applying this gain formula we get:

Oh Cool!! We Get

 What We want!$$
H(s)=1+\frac{R_{f}}{R_{i}+1 / C_{i} s}=\frac{\left(R_{i}+1 / C_{i} s\right)+R_{f}}{R_{i}+1 / C_{i} s}=\frac{\left(R_{i}+R_{f}\right)+1 / C_{i} s}{R_{i}+1 / C_{i} s}
$$

$$
H(s)=\frac{\left(R_{f}+R_{i}\right) C_{i} s+1}{R_{i} C_{i} s+1}
$$

Set:

$$
\begin{aligned}
& \omega_{1}=\frac{1}{\left(R_{i}+R_{f}\right) C_{i}}=628 \mathrm{rad} / \mathrm{s} \\
& \omega_{2}=\frac{1}{R_{i} C_{i}}=6283 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Choose:

$$
\begin{array}{|ll|}
\hline R_{f}=15 \mathrm{k} \Omega & R_{i}=1.5 \mathrm{k} \Omega \\
C_{i}=0.1 \mu \mathrm{~F} & \\
\hline
\end{array}
$$

Using standard values

Summary of Bode-Plot-Driven Design Example

1. Through insight gained from knowing how to do Bode plots by hand... we recognized the kind of transfer function we needed
2. Through insight gained in circuits class about impedances we recognized a key building block needed: Series R-C
3. Through insight gained in electronics class about op-amps we found a possible solution... the inverting op-amp approach
4. We then scrutinized our design for any overlooked issues
a. We discovered two problems that we needed to fix
5. We used further insight into op-amps to realize that we could fix the input impedance issue using a non-inverting form of the op-amp circuit
6. We didn't give up at first sign that the inverting form might not give us the form we want...
a. Through mathematical analysis we showed that we did in fact get what we wanted!!!!!!
