

State University of New York

EECE 301 Signals & Systems Prof. Mark Fowler

Note Set #38

• C-T Convolution: The Tool for Finding the Zero-State Response

Recall: Impulse Response

Earlier we introduced the concept of impulse response...

...what comes out of a system when the input is an impulse (delta function)

Noting that the LT of $\delta(t) = 1$ and using the properties of the transfer function and the Z transform we said that

$$h(t) = \mathcal{L}^{-1}\left\{H(s)\mathcal{L}\left\{\delta(t)\right\}\right\} \qquad h(t) = \mathcal{L}^{-1}\left\{H(s)\right\} \qquad h(t) = \mathcal{F}^{-1}\left\{H(\omega)\right\}$$

So...once we have either H(s) or $H(\omega)$ we can get the impulse response h(t)

Since $H(s) \& H(\omega)$ describe the system so must the impulse response h(t)

How???

Convolution Property and System Output

Let x(t) be a signal with CTFT $X(\omega)$ and LT of X(s)

Consider a system w/ freq resp $H(\omega)$ & trans func H(s)

 $x(t) \leftrightarrow X(\omega)$ $x(t) \leftrightarrow X(s)$ $h(t) \leftrightarrow H(\omega)$ $h(t) \leftrightarrow H(s)$

We've spent much time using these tools to analyze system outputs this way:

$$Y(\omega) = H(\omega)X(\omega) \iff y(t) = \mathcal{F}^{-1} \{ H(\omega)X(\omega) \}$$
$$Y(s) = H(s)X(s) \iff y[n] = \mathcal{L}^{-1} \{ H(s)X(s) \}$$

The convolution property of the CTFT and LT gives an alternate way to find *y*(*t*):

Convolution for Causal System & with Causal Input

An arbitrary LTI system's output can be found using the general convolution form:

$$y(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau$$

General LTI System

If the system is causal then h(t) = 0 for t < 0... Thus $h(t - \tau) = 0$ for $t > \tau ...$ so:

$$y(t) = \int_{-\infty}^{t} x(\tau)h(t-\tau)d\tau$$

Causal LTI System

If the input is causal then x(t) = 0 for t < 0... so:

$$y(t) = \int_{0}^{\infty} x(\tau)h(t-\tau)d\tau$$

Causal Input & General LTI System

If the system & signal are both causal then

$$y(t) = \int_{0}^{t} x(\tau)h(t-\tau)d\tau$$

Causal Input & Causal LTI System

Convolution Properties

1.<u>Commutativity</u> *x*(

$$t) * h(t) = h(t) * x(t)$$

2. Associativity

$$[x(t) * h_1(t)] * h_2(t) = x(t) * [h_1(t) * h_2(t)]$$

Associativity together with commutativity says we <u>can interchange the</u> <u>order of two cascaded systems</u>.

3. Distributivity

$$x(t) * [h_1(t) + h_2(t)] = x(t) * h_1(t) + x(t) * h_2(t)$$

<u>4. Derivative Property:</u>

$$\frac{d}{dt}[x(t) * v(t)] = \dot{x}(t) * v(t)$$

$$= x(t) * \dot{v}(t)$$
derivative

<u>5. Integration Property</u> Let y(t) = x(t)*h(t), then

$$\int_{-\infty}^{t} y(\lambda) d\lambda = \left[\int_{-\infty}^{t} x(\lambda) d\lambda \right] * h(t) = x(t) * \left[\int_{-\infty}^{t} h(\lambda) d\lambda \right]$$

- 3. <u>Find Edges</u> of the flipped signal
 - a. Find the left-hand-edge τ -value of $h(-\tau)$: call it $\tau_{L,0}$
 - b. Find the right-hand-edge τ -value of $h(-\tau)$: call it $\tau_{R,0}$
- 4. Shift $h(-\tau)$ by an arbitrary value of t to get $h(t \tau)$ and get its edges
 - a. Find the left-hand-edge τ -value of $h(t \tau)$ as a function of t: call it $\tau_{L,t}$
 - **<u>Important</u>**: It will <u>always</u> be... $\tau_{L,t} = \mathbf{t} + \tau_{L,0}$
 - b. Find the right-hand-edge τ -value of $h(t \tau)$ as a function of t: call it $\tau_{R,t}$
 - **<u>Important</u>**: It will <u>always</u> be... $\tau_{R,t} = \mathbf{t} + \tau_{R,0}$

<u>Note</u>: If the signal you flipped is <u>NOT finite duration</u>, one or both of $\tau_{L,t}$ and $\tau_{R,t}$ will be infinite ($\tau_{L,t} = -\infty$ and/or $\tau_{R,t} = \infty$)

Steps Continued

5. Find Regions of τ -Overlap

- a. What you are trying to do here is find intervals of *t* over which the product $x(\tau) h(t \tau)$ has a single mathematical form in terms of τ
- b. In each region find: Interval of *t* that makes the identified overlap happen
- c. Working examples is the best way to learn how this is done
- **Tips**:Regions should be contiguous with no gaps!!!Don't worry about < vs. \leq etc.
- 6. For Each Region: Form the Product $x(\tau) h(t \tau)$ and Integrate
 - a. Form product $x(\tau) h(t \tau)$
 - b. <u>Find the Limits of Integration</u> by finding the interval of τ over which the product is nonzero
 - i. Found by seeing where the edges of $x(\tau)$ and $h(t \tau)$ lie
 - ii. Recall that the edges of $h(t \tau)$ are $\tau_{L,t}$ and $\tau_{R,t}$, which often depend on the value of *t*
 - So... the limits of integration <u>may</u> depend on *t*
 - c. Integrate the product $x(\tau) h(t \tau)$ over the limits found in 6b
 - i. The result is generally a function of *t*, but is only valid for the interval of t found for the current region
 - ii. Think of the result as a "time-section" of the output y(t)

Steps Continued

- 7. <u>"Assemble" the output</u> from the output time-sections for all the regions
 - a. Note: you do NOT add the sections together
 - b. You define the output "piecewise"
 - c. Finally, if possible, look for a way to write the output in a simpler form

Example: Graphically Convolve Two Signals

$$y(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau$$
$$= \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau$$

By "Properties of Convolution"... these two forms are Equal

<u>This</u> is why we can flip <u>either</u> signal

Convolve these two signals:

Step #1: Write as Function of τ

Step #2: Flip $h(\tau)$ to get $h(-\tau)$

Step #3: Find Edges of Flipped Signal

Doing Step #4: Shift by t to get $h(t-\tau)$ & Its Edges

For <u>Arbitrary</u> Shift by t

Step #5 (Continued): Find Regions of τ-Overlap

Step #6 (Continued): Form Product & Integrate For Each Region

Step #6 (Continued): Form Product & Integrate For Each Region

Step #7: "Assemble" Output Signal

