State University of New York

EECE 301 Signals \& Systems Prof. Mark Fowler

Note Set \#38

- C-T Convolution: The Tool for Finding the

Zero-State Response

Recall: Impulse Response

Earlier we introduced the concept of impulse response...
...what comes out of a system when the input is an impulse (delta function)

Noting that the LT of $\delta(t)=1$ and using the properties of the transfer function and the Z transform we said that

$$
h(t)=\mathfrak{L}^{-1}\{H(s) \mathfrak{L}\{\delta(t)\}\} \quad h(t)=\mathfrak{L}^{-1}\{H(s)\} \quad h(t)=\mathscr{F}^{-1}\{H(\omega)\}
$$

So...once we have either $H(s)$ or $H(\omega)$ we can get the impulse response $h(t)$

Since $H(s) \& H(\omega)$ describe the system so must the impulse response $h(t)$

Convolution Property and System Output

Let $x(t)$ be a signal with CTFT $X(\omega)$ and LT of $X(s)$

Consider a system w/ freq resp $H(\omega)$ \& trans func $H(s)$

$$
\begin{aligned}
& \begin{array}{l}
x(t) \leftrightarrow X(\omega) \\
x(t) \leftrightarrow X(s)
\end{array} \\
& h(t) \leftrightarrow H(\omega) \\
& h(t) \leftrightarrow H(s)
\end{aligned}
$$

We've spent much time using these tools to analyze system outputs this way:

$$
\begin{aligned}
& Y(\omega)=H(\omega) X(\omega) \leftrightarrow y(t)=\mathscr{F}^{-1}\{H(\omega) X(\omega)\} \\
& Y(s)=H(s) X(s) \leftrightarrow y[n]=\mathscr{L}^{-1}\{H(s) X(s)\}
\end{aligned}
$$

The convolution property of the CTFT and LT gives an alternate way to find $y(t)$:

$$
\begin{aligned}
& \mathscr{J}^{-1}\{X(\omega) H(\omega)\}=x(t) * h(t) \\
& \mathfrak{L}^{-1}\{X(s) H(s)\}=x(t) * h(t) \\
& \text { LTI System with impulse response } h(t)
\end{aligned}
$$

Convolution for Causal System \& with Causal Input

An arbitrary LTI system's output can be found using the general convolution form:

$$
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$

General LTI System

If the system is causal then $h(t)=0$ for $t<0 \ldots$. Thus $h(t-\tau)=0$ for $t>\tau \ldots$ so:

$$
y(t)=\int_{-\infty}^{t} x(\tau) h(t-\tau) d \tau
$$

Causal LTI System

If the input is causal then $x(t)=0$ for $t<0 \ldots$ so:

$$
y(t)=\int_{0}^{\infty} x(\tau) h(t-\tau) d \tau
$$

Causal Input \& General LTI System

If the system $\&$ signal are both causal then

$$
y(t)=\int_{0}^{t} x(\tau) h(t-\tau) d \tau
$$

Causal Input \& Causal LTI System

1.Commutativity
 $$
x(t) * h(t)=h(t) * x(t)
$$

2. Associativity

$$
\left[x(t) * h_{1}(t)\right] * h_{2}(t)=x(t) *\left[h_{1}(t) * h_{2}(t)\right]
$$

Associativity together with commutativity says we can interchange the order of two cascaded systems.
3. Distributivity

$$
x(t) *\left[h_{1}(t)+h_{2}(t)\right]=x(t) * h_{1}(t)+x(t) * h_{2}(t)
$$

4. Derivative Property:

$$
\begin{aligned}
\frac{d}{d t}[x(t) * v(t)] & =\dot{x}(t) * v(t) \\
& =x(t) * \dot{v}(t)
\end{aligned}
$$

5. Integration Property Let $y(t)=x(t)^{*} h(t)$, then

$$
\int_{-\infty}^{t} y(\lambda) d \lambda=\left[\int_{-\infty}^{t} x(\lambda) d \lambda\right] * h(t)=x(t) *\left[\int_{-\infty}^{t} h(\lambda) d \lambda\right]
$$

Steps for Graphical Convolution $x(t) * h(t)$

1. Re-Write the signals as functions of $\tau: x(\tau)$ and $h(\tau)$

$$
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$ what the book uses λ... It is not a big deal as they are just dummy variables!!!

3. Find Edges of the flipped signal
a. Find the left-hand-edge τ-value of $h(-\tau)$: call it $\tau_{L, 0}$
b. Find the right-hand-edge τ-value of $h(-\tau)$: call it $\tau_{R, 0}$
4. Shift $h(-\tau)$ by an arbitrary value of t to get $h(t-\tau)$ and get its edges
a. Find the left-hand-edge τ-value of $h(t-\tau)$ as a function of t : call it $\tau_{L, t}$

- Important: It will always be... $\tau_{L, t}=\mathbf{t}+\tau_{L, 0}$
b. Find the right-hand-edge τ-value of $h(t-\tau)$ as a function of t : call it $\tau_{R, t}$
- Important: It will always be ... $\tau_{R, t}=\mathbf{t}+\tau_{R, 0}$

Note: If the signal you flipped is NOT finite duration,
one or both of $\tau_{L, t}$ and $\tau_{R, t}$ will be infinite ($\tau_{L, t}=-\infty$ and/or $\tau_{R, t}=\infty$)

Steps Continued

5. Find Regions of τ-Overlap

a. What you are trying to do here is find intervals of t over which the product $x(\tau) h(t-\tau)$ has a single mathematical form in terms of τ
b. In each region find: Interval of t that makes the identified overlap happen
c. Working examples is the best way to learn how this is done

Tips: Regions should be contiguous with no gaps!!! Don't worry about $<$ vs. \leq etc.
6. For Each Region: Form the Product $x(\tau) \boldsymbol{h}(\boldsymbol{t}-\tau)$ and Integrate
a. Form product $x(\tau) h(t-\tau)$
b. Find the Limits of Integration by finding the interval of τ over which the product is nonzero
i. Found by seeing where the edges of $x(\tau)$ and $h(t-\tau)$ lie
ii. Recall that the edges of $h(t-\tau)$ are $\tau_{L, t}$ and $\tau_{R, t}$, which often depend on the value of t

- So... the limits of integration may depend on t
c. Integrate the product $x(\tau) h(t-\tau)$ over the limits found in 6 b
i. The result is generally a function of t, but is only valid for the interval of t found for the current region
ii. Think of the result as a "time-section" of the output $y(t)$

Steps Continued

7. "Assemble" the output from the output time-sections for all the regions a. Note: you do NOT add the sections together
b. You define the output "piecewise"
c. Finally, if possible, look for a way to write the output in a simpler form

Example: Graphically Convolve Two Signals

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau \\
& =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
\end{aligned}
$$

By "Properties of
Convolution"...
these two forms are Equal

This is why we can flip either signal
Convolve these two signals:

Step \#1: Write as Function of τ

Step \#2: Flip $\boldsymbol{h}(\tau)$ to get $\boldsymbol{h}(-\tau)$

Step \#3: Find Edges of Flipped Signal

Motivating Step \#4: Shift by t to get $h(t-\tau)$ \& Its Edges

Just looking at 2 "arbitrary" t values

For $t=-2$
In Each Case We Get

Doing Step \#4: Shift by t to get $h(t-\tau)$ \& Its Edges

For Arbitrary Shift by t

Step \#5: Find Regions of τ-Overlap

Step \#5 (Continued): Find Regions of τ-Overlap

Step \#5 (Continued): Find Regions of τ-Overlap

Step \#6: Form Product \& Integrate For Each Region

Region I: $\boldsymbol{t}<0$

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \\
& =\int_{-\infty}^{\infty} 0 d \tau=0 \\
y(t) & =0 \quad \text { for all } t<0
\end{aligned}
$$

With 0 integrand the limits don't matter!!!

Region II: $0 \leq t \leq 1$

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \\
& =\int_{0}^{t} 6 d \tau=[6 \tau]_{0}^{t}=6 t-6 \times 0=6 t \\
y(t) & =6 t \text { for } 0 \leq t \leq 1
\end{aligned}
$$

Step \#6 (Continued): Form Product \& Integrate For Each Region

Region III: $1<t \leq 2$

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \\
& =\int_{t-1}^{t} 6 d \tau=[6 \tau]_{t-1}^{t}=6 t-6(t-1)=6 \\
y(t) & =6 \text { for all } t \text { such that : } 1<t \leq 2
\end{aligned}
$$

Step \#6 (Continued): Form Product \& Integrate For Each Region

Region V: $t>3$

Step \#7: "Assemble" Output Signal

Region I
 $t<0$

Region II $0 \leq t \leq 1$

Region III
 $1<t \leq 2$

$\frac{\text { Region IV }}{2<t \leq 3}$
Region V $t>3$
$y(t)=0$
$\frac{y(t)=6 t}{4}$
h
$y(t)=6$
$y(t)=-6 t+18$

$$
y(t)=0
$$

