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EECE 301 
Signals & Systems

Prof. Mark Fowler

Note Set 39
Using a D-T System to Simulate a C-T System
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Simulation of CT Systems via DT Systems

Sometimes we are designing and building a DT system “on its own terms”… 
meaning we are required to design it to meet certain specs expressed directly 
in terms of the “DT world”

However, when we are trying to design or analyze a CT system we generally 
want to use computers to help assess the design.  Thus, it would be helpful if 
we could use DT system ideas to simulate a given CT LTI system.

Although it is possible to do this there are some pitfalls…
So in this lecture we’ll take a look at some of these ideas.

For guitarists… all those guitar 
amp simulators (like “Line 6”) 
use these ideas to make boxes 
that simulate classic tube guitar 
amps (but they also have to 
simulate Non-Linearities!

We’ll only touch on this topic… 
Further study in DSP is needed to 
learn the details!
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Method #1: Approximating C-T Conv w/ D-T Conv

We can use D-T convolution to numerically approximate a C-T convolution:
• C-T Convolution involves an Integral 

• D-T Convolution involves a Summation

Recall Calc I…  Integration was defined as the limit of a series of Summations

So… to approximately
compute the integral we 
only need Samples of the 
function!
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Obviously… to be reasonably 
accurate we need  quite small

We’ve seen that a CT system can be described via convolution.
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This result says that if 
• h(t) is the C-T system’s impulse response 
• T is the spacing between time samples in the D-T simulation

So apply this idea 
to C-T convolution:
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Then the equivalent D-T system has an impulse response given by:

Choice of T (Fs = 1/T)
• We are sampling h(t)…  need to ensure insignificant aliasing. 
• Usually OK if… 

 signal is sampled to minimize acceptable real-world rates and
 the upper edge of passband of the CT system lies sufficiently below Fs/2
 So… highpass filters are not suitable for this method!

“Impulse Invariance Method”
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H=freqz(h,1,w)

So… how do we use this DT h[n]??? 

y = filter(h,1,x)

We can truncate this to a finite length… 
• Make sure you keep enough to capture its significant part
• May apply a window to taper off at the end (but usually not front!)

[0] (0) / 2h Th

A Little Trick…
• If h(t) is discontinuous… replace h[0] w/ half its value!

Check its frequency response to see if compares well to CT system’s 

Implement the simulating DT system as an FIR filter

Drawbacks to this method
1. Can’t handle highpass-type passbands
2. Can result in very long FIR filters

• Computationally Complex!
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Method #2: Approximating C-T Freq Resp w/ D-T Freq Resp
Instead of trying to match the impulse response we’ll now try to match the 
Frequency Response….

Sampling the impulse response causes aliasing in the frequency response… 
That is why this method fails for highpass type passbands!

But… even for non-highpass systems the frequency response “spreads” out over the 
whole – to  range…

And the parts outside the –Fs/2 to Fs/2 range get aliased back into that range. 

So… we are going to pull a slick math trick to “squish” the whole – to  range 
down into the –Fs/2 to Fs/2 range…  Something like this:

fFs/2

fdFs/2

CT 
Freq 
Resp

DT 
Freq 
Resp

DT freq in Hz equivalent: fd = Fs/2

Note: Works fine 
for highpass!!
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Without deriving it… a mapping called the “Bilinear Transform” does this!

The bilinear mapping says… replace s in the CT H(s) with: 2 1
1

zs
T z
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Not only does this “squish” the frequency the way we want it… but it also 
transforms a   rational H(s)  rational H(z)…

What we have from LTI system 
described by a Differential Equation

What we have from LTI system 
described by a Difference Equation

An IIR
DT System!!!
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H=freqz(b,a,w)

y = filter(b,a,x)

Check its frequency response to see if compares well to CT system’s 

Implement the simulating DT system as an FIR filter
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Example: Guitar Amp Simple Single Tone Control
Circuit structure from book Electronics for Guitarists by D. J. Dailey, Springer 2011.
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Audio Range

See code on 
next slide…
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Checking the Simulating DT System in Matlab
Because the Freq Resp stays flat (for  > 0) we can’t use our first method (based 
on sampling the impulse response).
So… we will use the bilinear transform method…
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%%%%  First compute the true frequency response…
Ro=50000;Rin=470000;R=250000;C=0.022e-6;
G=Rin/(Ro+Rin);
alpha=0.3;   % Set as desired 0 to 1
f=logspace(1,6,10000);  % Specify range of freqs in Hz to plot Freq Resp
w=2*pi*f;    % Convert to rad/sec
H=G*(alpha*R*C*j*w + 1)./ ( (Ro+alpha*R)*C*j*w + 1);
semilogx(f,20*log10(abs(H)))   % plot computed H in dB on log freq axis
hold on
%%%%%   Now design the equivalent DT filter…
Fs = 44100;    % Set desired sampling rate
[NUMd,DEN_d]=bilinear(G*[alpha*R*C 1],[(Ro+alpha*R)*C  1],Fs);
wd=linspace(0,pi,2048);  % Set DT freq in rad/sample
H_bl=freqz(NUMd,DEN_d,wd);  % Compute DT Freq Resp
fd=Fs*wd/(2*pi);   % Convert DT rad/sample to equivalent values in Hz
semilogx(fd,20*log10(abs(H_bl)),'r--')    % plot

Code to Compare Circuit’s CT Freq Resp to DT Freq Resp
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Running the Simulation of the Circuit in Matlab
[x,Fs]=wavread('guitar1.wav');   %  read in wave file of guitar recording
%%%  Note… Fs = 44100 for this file
sound(x,Fs);
Ro=50000;Rin=470000;R=250000;C=0.022e-6;
G=Rin/(Ro+Rin);
alpha = input('Enter alpha value: ');   % Set as desired 0 to 1
[NUMd,DEN_d]=bilinear(G*[alpha*R*C 1],[(Ro+alpha*R)*C  1],Fs);
y=filter(NUMd,DEN_d,x);  %% this D-T filter approximates the C-T circuit
vol_boost=sqrt(sum(x.^2)/sum(y.^2));
%%% vol_boost tries to re-set the volume of the filtered signal
%%%  to be more like the original so that we are comparing only tone
%%%  changes
sound(vol_boost*y,Fs)

This code (single_tone_control.m) and the wav file (guitar1.wav) are available 
on the course web site…

Run the m-file to hear the effect of this filter on the guitar signal for different 
values of .  You should note that the guitar now sounds “muffled” for small 
… that is because the filter has removed some of the high frequency content.


