State University of New York

EECE 301
 Signals \& Systems Prof. Mark Fowler

Note Set \#40

- C-T Systems: Laplace Transform ... Solving Differential Eqs. w/ ICs.

Two Different Scenarios for LT Analysis

We've already used the LT to analyze a CT system described by a Difference Equation...

However, our focus there was:

- For inputs that could exist for all time: $-\infty<n<\infty$
- For systems that did not have Initial Conditions

Can't really think of ICs if the signal never really "starts"...

This is a common view in areas like signal processing and communications...
For that we used the bilateral LT and found: $\quad y(t)=\mathfrak{L}^{-1}\{H(s) X(s)\}$
But in some areas (like control systems) it is more common to consider:

- Inputs that Start at time $t=0 \quad$ (input $x(t)=0$ for $t<0$)
- Systems w/ ICs (output $y(t)$ has non-zero derivatives @ $t=0$)

For that scenario it is best to use the unilateral LT...
One sided Laplace Transform

$$
X(s)=\int_{0}^{\infty} x(t) e^{-s t} d t \quad s \text { is complex-valued }
$$

Properties of Unilateral LT

Most of the properties are the same as for the bilateral form.
But... an important difference is for unilateral LT of derivatives of causal signals:

Time Differentiation:

| $\qquad \dot{x}(t) \leftrightarrow s X(s)-x\left(0^{-}\right)$ |
| :--- | :--- |
| If $x(t)$ is discontinuous $x\left(0^{-}\right)$is |
| the limit at 0 "from the left" |
| Very different from FT property
 This LT property allows handling
 of IC's!!! |

$$
\ddot{x}(t) \leftrightarrow s^{2} X(s)-s x\left(0^{-}\right)-\dot{x}\left(0^{-}\right)
$$

$$
x^{(N)}(t) \leftrightarrow s^{N} X(s)-s^{N-1} x\left(0^{-}\right)-s^{N-2} \dot{x}\left(0^{-}\right)-\cdots-s x^{(N-2)}\left(0^{-}\right)-x^{(N-1)}\left(0^{-}\right)
$$

Solving a First-order Diff. Eq. using the LT
$\frac{d y(t)}{d t}+a y(t)=b x(t)$

Example: RC Circuit

Now we apply these general ideas to solving for the output of the previous RC circuit with a unit step input.... $x(t)=u(t)$

$$
\frac{d y(t)}{d t}+\frac{1}{R C} y(t)=\frac{1}{R C} x(t)
$$

Now... we need the LT of the input...
From the LT table we have:

$$
Y(s)=\frac{y\left(0^{-}\right)}{s+1 / R C}+\left[\frac{1 / R C}{(s+1 / R C)}\right] \frac{1}{s}
$$

This "transfers" the input $X(s)$ to the output $Y(s)$
We'll see this later as "The Transfer Function"

$$
x(t)=u(t) \quad \leftrightarrow \quad X(s)=\frac{1}{s}
$$

Now we have "just a function of s" to which we apply the ILT...

So now applying the ILT we have:

$$
\mathcal{L}^{-1}\{Y(s)\}=\mathcal{L}^{1}\left\{\frac{y\left(0^{-}\right)}{s+1 / R C}+\left[\frac{1 / R C}{(s+1 / R C) s}\right]\right\} \quad \underbrace{\begin{array}{c}
\text { Apply LT to } \\
\text { both sides }
\end{array}}
$$

$$
y(t)=\mathcal{L}^{-1}\left\{\frac{y\left(0^{-}\right)}{s+1 / R C}\right\}+\mathcal{L}^{-1}\left\{\left[\frac{1 / R C}{(s+1 / R C) s}\right]\right\}
$$

This part (zero-input sol'n) is easy... Just look it up on the LT Table!!
This part (zero-state sol'n) is harder...
It is NOT on the LT Table!!

Now let's find the other part of the solution... the zero-state sol'n... the part that is driven by the input:

$$
y(t)=\mathcal{L}^{-1}\left\{\frac{y\left(0^{-}\right)}{s+1 / R C}\right\}+\mathcal{L}^{-1}\left\{\left[\frac{1 / R C}{(s+1 / R C) s}\right]\right\}
$$

We can factor this function of s as follows:

$$
\mathcal{L}^{-1}\left\{\left[\frac{1 / R C}{(s+1 / R C) s}\right]\right\}=\mathcal{L}^{-1}\left\{\left[\frac{1}{s}-\frac{1}{s+1 / R C}\right]\right\}
$$

Can do this with "Partial Fraction Expansion", which is just a "fool-proof" way to factor

Now... each of these terms is on the LT table:

$=\underbrace{\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{s+1 / R C}\right\}}_{=u(t)} \underbrace{}_{=e^{-(t / R C)}} u(t)$ (Linearity | of LT |
| :---: |

$$
=\left[1-e^{-(t / R C)}\right] u(t)
$$

So the zero-state response of this system is: $\left[1-e^{-(t / R C)}\right] u(t)$

Now putting this zero-state response together with the zero-input response we found gives:

$$
y(t)=\underbrace{y\left(0^{-}\right) e^{-(t / R C)} u(t)}_{\text {IC Part }}+\underbrace{\left[1-e^{-(t / R C)}\right] u(t)}_{\text {Input Part }}
$$

Notice that:

The IC Part "Decays Away" but...
The Input Part "Persists"

Here is an example for $\boldsymbol{R C}=\mathbf{0 . 5} \mathrm{sec}$ and the initial $\boldsymbol{V}_{\text {IC }}=5$ volts:

Second-order case

Circuits with two energy-storing devices ($\mathrm{C} \& \mathrm{~L}$, or 2 Cs or 2 Ls) are described by a second-order Differential Equation...

$$
\begin{aligned}
& \begin{array}{l}
\frac{d^{2} y(t)}{d t^{2}}+a_{1} \frac{d y(t)}{d t}+a_{0} y(t)=b_{1} \frac{d x(t)}{d t}+b_{0} x(t) \\
\text { Assume Causal Input } \\
\text { w/ ICs } \dot{y}\left(0^{-}\right) \& y\left(0^{-}\right) \\
\begin{array}{cc}
x(t)=0 & t<0 \\
\downarrow \\
x\left(0^{-}\right)=0
\end{array}
\end{array}
\end{aligned}
$$

We solve the $2^{\text {nd }}$-order case using the same steps:
Take LT of Diff. Equation:

$$
[\underbrace{s^{2} Y(s)-y\left(0^{-}\right) s-\dot{y}\left(0^{-}\right)}]]+a_{1}[\underbrace{s Y(s)-y\left(0^{-}\right)}]+a_{0} Y(s)=\underbrace{b_{1} s X(s)}+b_{0} X(s)
$$

From $2^{\text {nd }}$ derivative property, accounting for ICs

From $1^{\text {st }}$ derivative property, accounting for ICs

From 1 ${ }^{\text {st }}$ derivative property, causal signal

Note: The role the Characteristic Equation plays here!
It just pops up in the LT method!
The same happened for a $1^{\text {st }}$-order Diff. Eq...
...and it happens for all orders

Like before...
to get the solution in the time domain find the Inverse LT of Y(s)

To get a feel for this let's look at the zero-input solution for a 2nd-order system:

$$
Y_{z i}(s)=\frac{y\left(0^{-}\right) s+\dot{y}\left(0^{-}\right)+a_{1} y\left(0^{-}\right)}{s^{2}+a_{1} s+a_{0}}=\frac{y\left(0^{-}\right) s+\left[\dot{y}\left(0^{-}\right)+a_{1} y\left(0^{-}\right)\right]}{s^{2}+a_{1} s+a_{0}}
$$

which has... either a $1^{\text {st }}$-order or $0^{\text {th }}$-order polynomial in the numerator and...
\ldots a $2^{\text {nd }}-$ order polynomial in the denominator

For such scenarios there are Two LT Pairs that are Helpful:

$$
\begin{aligned}
& \text { For... } \\
& 0<|\zeta|<1
\end{aligned}
$$

$$
\begin{array}{|c}
A e^{-\zeta \omega_{n} t} \sin \left[\left(\omega_{n} \sqrt{1-\zeta^{2}}\right) t\right] u(t) \\
\text { where : } \quad A=\frac{\alpha}{\omega_{n} \sqrt{1-\zeta^{2}}}
\end{array} \longleftrightarrow \frac{\alpha}{S^{2}+2 \zeta \omega_{n} S+\omega_{n}^{2}}
$$

$$
A e^{-\zeta \omega_{n} t} \sin \left[\left(\omega_{n} \sqrt{1-\zeta^{2}}\right) t+\phi\right] u(t)
$$

$$
\text { where : } \quad A=\beta \sqrt{\frac{\left(\alpha-\zeta \omega_{n}\right)^{2}}{\omega_{n}^{2}\left(1-\zeta^{2}\right)}+1}
$$

$$
\longleftrightarrow \beta \frac{s+\alpha}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

These are not in your book's table... but they are on the table on my website!

Otherwise...

Factor into two terms

Note the effect of the ICs:

$$
Y_{z i}(s)=\frac{y\left(0^{-}\right) s+\dot{y}\left(0^{-}\right)+a_{1} y\left(0^{-}\right)}{s^{2}+a_{1} s+a_{0}}=\frac{y\left(0^{-}\right) s+\left[\dot{y}\left(0^{-}\right)+a_{1} y\left(0^{-}\right)\right]}{s^{2}+a_{1} s+a_{0}}
$$

$$
A e^{-\zeta \omega_{n} t} \sin \left[\left(\omega_{n} \sqrt{1-\zeta^{2}}\right) t+\phi\right] u(t) \longleftrightarrow \frac{s+\alpha}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

Example of using this type of LT pair: Let $\quad y\left(0^{-}\right)=2 \quad \dot{y}\left(0^{-}\right)=4$

Then

$$
Y_{z i}(s)=\frac{2 s+\left(4+a_{1} 2\right)}{s^{2}+a_{1} s+a_{0}}=2\left[\frac{s+\left(2+a_{1}\right)}{s^{2}+a_{1} s+a_{0}}\right]
$$

Pulled a 2 out from each term in Num. to get form just like in LT Pair.

Now assume that for our system we have: $a_{0}=100 \quad \& \quad a_{1}=4$

Then

$$
Y_{z i}(s)=2\left[\frac{s+6}{s^{2}+4 s+100}\right]
$$

Compare to LT:

$$
\beta \frac{s+\alpha}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

And identify: $\begin{array}{lll}\alpha=6 & \beta=2 \\ \omega_{n}^{2}=100 & \Rightarrow & \omega_{n}=10 \\ 2 \zeta \omega_{n}=4 & \Rightarrow & \zeta=4 / 2 \omega_{n}=4 / 20=0.2\end{array}$

So now we use these parameters in the time-domain side of the LT pair:

$$
\begin{aligned}
& \alpha=6 \quad \beta=2 \\
& \omega_{n}=10 \\
& \zeta=0.2
\end{aligned}
$$

Assuming output is a voltage!

$$
A e^{-\zeta \omega_{n} t} \sin \left[\left(\omega_{n} \sqrt{1-\zeta^{2}}\right) t+\phi\right] u(t)
$$

$$
\text { where: } \quad A=\beta \sqrt{\frac{\left(\alpha-\zeta \omega_{n}\right)^{2}}{\omega_{n}^{2\left(1-\zeta^{2}\right)^{2}}+1}}
$$

$$
\phi=\tan ^{-1}\left(\frac{\omega_{n} \sqrt{1-\zeta^{2}}}{\alpha-\zeta \omega_{n}}\right)
$$

$$
y_{z i}(t)=2.16 e^{-2 t} \sin [9.80 t+1.18] u(t)
$$

Notice that the zero-input solution for this $2^{\text {nd }}$-order system oscillates... $1^{\text {st-order systems can't oscillate... }}$
$2^{\text {nd }}$ - and higher-order systems can oscillate but might not!!

Here is what this zero-input solution looks like:

$\mathbf{N}^{\text {th_Order Case }}$

Diff. eq of the

$$
\frac{d^{N} y(t)}{d t^{N}}+a_{N-1} \frac{d^{N-1} y(t)}{d t^{N-1}}+\ldots+a_{1} \frac{d y(t)}{d t}+a_{0} y(t)=b_{M} \frac{d x^{M}(t)}{d t^{M}}+b_{1} \frac{d x(t)}{d t}+b_{0} x(t)
$$

$$
\text { For } M \leq N \text { and }\left.\frac{d^{i} x(t)}{d t^{i}}\right|_{t=0^{-}}=0 \quad i=0,1,2, \ldots, M-1
$$

Taking LT and re-arranging gives:

$$
Y(s)=\frac{I C(s)}{A(s)}+\frac{B(s)}{A(s)} X(s) \quad \begin{aligned}
& \text { LT of the solution (i.e. the LT of } \\
& \text { the system output) }
\end{aligned}
$$

$$
\text { where } \begin{cases}A(s)=s^{N}+a_{N-1} s^{N-1}+\ldots+a_{1} s+a_{0} & \text { "output-side" polynomial } \\ B(s)=b_{M} s^{M}+\ldots+b_{1} s+b_{0} & \text { "input-side" polynomial } \\ I C(s)=\text { polynomial in s that depends on the ICs }\end{cases}
$$

Recall: For $2^{\text {nd }}$ order case: $I C(s)=y\left(0^{-}\right) s+\left[\dot{y}\left(0^{-}\right)+a_{1} y\left(0^{-}\right)\right]$

Consider the case where the LT of $x(t)$ is rational: $\quad X(s)=\frac{N_{X}(s)}{D_{X}(s)}$
Then... $Y(s)=\frac{I C(s)}{A(s)}+\frac{B(s)}{A(s)} X(s)=\frac{I C(s)}{A(s)}+\frac{B(s)}{A(s)} \frac{N_{X}(s)}{D_{X}(s)}$
This can be expanded like this: $Y(s)=\frac{I C(s)}{A(s)}+\frac{E(s)}{A(s)}+\frac{F(s)}{D_{X}(s)}$
for some resulting polynomials $E(s)$ and $F(s)$
So... for a system with $\quad H(s)=\frac{B(s)}{A(s)} \quad$ and input with $X(s)=\frac{N_{X}(s)}{D_{X}(s)}$ and initial conditions you get:
Zero-Input

Response | Zero-State |
| :---: |
| Response |

$$
Y(s)=\frac{I C(s)}{A(s)}+\underbrace{\frac{E(s)}{A(s)}}+\underbrace{\frac{F(s)}{D_{X}(s)}}
$$

Decays in time domain if roots of system char. poly. $A(s)$ have negative real parts

If all IC's are zero (zero state) $C(s)=0$

Summary Comments:

1. From the differential equation one can easily write the $H(s)$ by inspection!
2. The denominator of $H(s)$ is the characteristic equation of the differential equation.
3.The roots of the denominator of $H(s)$ determine the form of the solution...
...recall partial fraction expansions
BIG PICTURE: The roots of the characteristic equation drive the nature of the system response... we can now see that via the LT.

We now see that there are three contributions to a system's response:
zero-input resp.

1. The part driven by the ICs
a. This will decay away if the Ch. Eq. roots have negative real parts
2. A part driven by the input that will decay away if the Ch. Eq. zero-state $\{$ roots have negative real parts ... "Transient Response"
resp. \quad 3. A part driven by the input that will persist while the input persists... "Steady State Response"
