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Abstract – Sensor networks collect data upon which multiple 
inferences (estimations and decisions) will be based.  The 
optimizing compression with respect to one inference may lead 
to suboptimal compression with respect to the others.  
Furthermore, not all of these inferences have the same level of 
importance to the end users of the network’s data.  To address 
this, a framework is developed that uses specific distortion 
measures to assess the impact of compression on the multiple 
inferences: Fisher information is used to assess the impact on 
estimation accuracy while Chernoff and Kullback-Liebler 
distances are used to assess the impact on decision accuracy.  
This framework is applied to two examples: (i) multiple 
estimations and (ii) single estimation and a binary decision.  
Simulation results are provided that show that there is indeed 
a trade-off between these multiple inferences and that with 
proper a priori information the proposed data compression 
framework can enact trade-offs between them. 
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I.   INTRODUCTION 

Because the primary task of sensor networks is to make 
statistical inferences based on the data collected throughout 
the network, it is important to design compression methods 
that cause minimal degradation of the accuracy of these 
inferences.  Data compression for distributed multi-sensor 
systems has been previously considered to some degree but 
they have not considered the issue that sensor networks 
may have multiple inference tasks to accomplish [5][6]. 
Notably, multiple inferences will likely have conflicting 
compression requirements and finding the right way to 
balance these conflicts is crucial.  Thus, compression for 
sensor networks must consider the case of multiple 
inferences.  This work also has importance in sensor 
applications other than sensor networks – an example is the 
use of RF sensors on aircraft for the purpose of detecting 
and then locating enemy RF emitters [2]. 

One of the keys to addressing compression for multiple 
inference tasks is to use distortion measures that accurately 
reflect the ultimate performance on the tasks.  To design 
compression algorithms suitable for use under conflicting 
inference goals it is essential to have appropriate, useable 
metrics that measure the impact of reducing the rate on the 
inference performance.  For estimation tasks, the impact of 
compression should be assessed by its impact on the 
variance of the estimation error (at least in the unbiased 
estimate case). For decision tasks (e.g., detection, 

recognition, identification, etc.) the impact of compression 
should be assessed by its impact on the probability of an 
error in the decision.  In addition, there may be the need for 
an end-user to view image data collected in a sensor 
network – the distortion measure for high-fidelity 
reconstruction is often a version of the mean-square error 
(MSE) measure, modified to incorporate some appropriate 
perceptual criteria.  We have proposed using the Fisher 
information to derive estimation-appropriate distortion 
measures, while others [3] have proposed using the 
Chernoff and Kullback-Liebler distances to derive decision-
appropriate distortion measures.  In this paper we show how 
to develop compression algorithms that trade-off between 
Fisher Information, Chernoff and Kullback-Liebler 
distances, and MSE in a setting where there are various 
conflicting goals in a multiple inference setting. 

This paper is organized as follows: Section II discusses 
the reason for using Fisher Information, Chernoff and 
Kullback-Liebler distances, and MSE as the theoretical 
framework to derive the distortion measures for multiple 
inferences. Section III provides details on how these criteria 
are used to derive specific distortion criteria that can be use 
to optimize a specified data compression framework. Two 
specific cases are considered and numerical simulations are 
given. The conclusions and future work are presented in 
Section IV. 
 
II. DISTORTION MEASURES FOR MULTIPLE 
INFERENCES 

This section will discuss the motivation for using Fisher 
Information, Chernoff and Kullback-Liebler distances, and 
MSE as the general theoretical framework to derive the 
distortion measures for multiple inferences. Let noisy 
measurement x be the set of data collected at one of the 
sensor node to support multiple inferences and 
reconstruction: estimation of the parameters θi, i = 1, 2, …, 
p, decision between hypotheses H0 and H1, and 
reconstruction of the data x.  In order to save energy and 
reduce transmission latency, the noisy measurement x will 
be lossy compressed before they are sent to other sensor 
nodes.  The vector x can be represented as 

                   nsx += θ ,                                            (1) 
where vector s stands for the unknown signal, its presence 
to be determined, θ is the unknown parameter vector to be 
estimated, and n is the noise, independent from the signal. 
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Let x̂ denote the x after passing through lossy compression 
codec. Then, the inferences’ accuracy based on x̂  should 
be inferior to those based on x because some information 
relative to the inferences’ accuracy is lost when x is 
processed by the lossy compression. Our goals here are to 
derive the distortion measures (besides MSE) to reflect the 
structure of data, and decrease the date rate significantly 
while minimizing the degradation relative to inference tasks. 
 
A. Fisher Information Matrix for Estimation: 

To estimate the unknown parameters θ, Fisher 
information under uncompressed x  is 
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where p(x; θ) is the probability density function of x under 
the unknown parameter vectorθ . As is well-known, Fisher 
information is related to the Cramer-Rao Bound (CRB) in 
that the diagonal elements of its inverse provide lower 
bounds on the achievable estimation error variance, that is 
               piiii ,,2,1,)](I[)ˆ( 12 K=≥ − θθσ .                         (3) 

The Fisher information matrix I measures how much 
information is available from the observation x relevant to 
estimation of parameters θi, i = 1, 2, …, p., when the lossy 
compressed x̂ is used to do the estimation instead of x, the 
Fisher information matrix becomes 
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because lossy compression is equivalent to adding 
quantization noise to the data which causes the decrease of 
the Fisher information. The goals of compression design 
should be to minimize the decrease in the Fisher 
information under some set of constraints (e.g., on rate and 
energy in the more general R-E-A framework we have 
proposed in [1]). In other words, if ( )⋅C  denotes a compress 
algorithm, we have )(ˆ xx C= . The design of ( )⋅C should 
maximize Fisher information that is given as follows: 
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Maximizing Fisher information minimizes the Cramer-
Rao lower bound according to (3). The form (or structure) 
of the Fisher information for specific scenarios provides 
insight into how to allocate rate resources to satisfy trades 
among the accuracy of multiple estimations. 
 
B. Chernoff & Kullback-Liebler Distances for 
Decisions: 

Under the signal model as (1), detection of the signals 

θs in the x  can be formulated as a binary statistical 
hypothesis test, 





+=
=

nsx
nx

θ:
:

1

0

H
H                                    (6) 

Usually, the detection algorithm takes the form of a 
LRT, 
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where p(x; H0)and p(x; H1) are PDF under hypotheses H0 
and H1 respectively, τ is an appropriate threshold which is 
chosen to minimize the probability of error Pe or the 
probability of miss Pmiss for a given value of false alarm Pf. 
Since the ability to distinguish between two hypotheses 
depends on the respective data distributions and a larger 
distance leads to better decision performance, measures of 
distance between two distributions are a natural choice for 
the performance metrics. Therefore, instead of using 
intractable Pe or Pmiss as the distortion measure, it is 
suggested in [3] that optimizing compression algorithm for 
detection could be based on Chernoff distance or Kullback-
Leibler because they possess three attractive properties 
which are suitable for the compression algorithms: (i) they 
are invariant under application of invertible maps to the 
data; (2) they decrease under application of many-to-one 
maps such as quantization (causes of loss of information); 
(iii) they are very closely related to Pe or Pmiss . Letting d(.) 
denote these two distances, we have the relationship 
between the distances under the x  and its lossy 
compression processed version x̂  as 
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       The explicit forms of Chernoff distance and Kullback-
Liebler distance are 
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respectively. Chernoff distance gives an upper bound on 
both Pe or Pmiss: 
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whereτ is the threshold in the LRT in (7). Under some 
conditions, the relationship exists between the asymptotic 
probability of a miss and the Kullback-Leibler distance for 
a fixed small probability of false alarm as 
             ( ));()||;( 10~ HpHpD

miss eP xx−                               (13) 
Multiple hypotheses can be handled in a similar way. 

Therefore, the goal of compression design should be to 
minimize the decrease in the distance measure under some 
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set of constraints (e.g., on rate and energy in the more 
general R-E-A framework [1]). Similar to the Fisher 
information, the design of ( )⋅C should maximize Chernoff 
distance or Kullback-Leibler distance which are given as 
follows: 
        ( ){ });)((),;)((max 10 HCpHCpDsC

xx  ,                        (14) 

or  
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C
xx   .                       (15) 

 
C. MSE for Reconstruction: 

As is well known, MSE is to minimize 
                              2x̂x −                                            (16) 

where x̂  is the reconstructed data after compression and 
transmission and ||.|| denotes the Euclidean norm. The goal 
of compression design should be to minimize the increase 
in the MSE under some set of constraints (e.g., on rate and 
energy in the more general R-E-A framework [1]).  
 
III. TRADE-OFFS IN DATA COMPRESSION FOR 
MULTIPLE INFERENCES 

The framework we consider here is not intended to be 
the most general scenario, but rather merely a vehicle by 
which we can explore the notion of designing compression 
methods that address multiple inferences.  Thus, we 
consider one sensor sending its collected data to a central 
sensor where multiple inferences are made and 
reconstruction is performed.  (Obviously this scenario will 
need to be broadened before application to sensor networks 
can be made; nonetheless, the scenario considered still 
provides applicable insight into the sensor network arena.)  
The set-up is shown in Figure 1, where the collected data 
samples x are compressed using transform-based coding 
with transform T and quantizers Qi; at the processing sensor 
the compressed data is decoded (not explicitly shown) and 
inverted using T-1 to recover the data that is used for 
deciding between M hypotheses, estimation of a vector of 
parameters, and visualization/reconstruction of the data. 
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Figure 1: Scenario considered for study of data 
compression for multiple inference tasks 

We have studied several specific problems using this 
framework, two of which will be discussed in the paper: 

1. Estimation of multiple parameters without 
detection or reconstruction. 

2. Estimation of a single parameter and a binary 
detection without reconstruction. 

 
A. Multiple Parameters Without Detection or 
Reconstruction 

The scenario considered in this case is estimating time-
difference-of-arrival (TDOA) and frequency-difference-of-
arrival (FDOA) between a pair of sensors to estimate the X-
Y position of an RF emitter.  

The noisy signal to be compressed at one of the sensor 
nodes in the continuous form is given by 
                          )()()( tntstx +=                                  (17)                        
If we assume the other sensor has much higher SNR (Signal 
to Noise Ratio) than the one to be compressed and n(t) is 
independent additive white Gaussian noise (AWGN), the 
Cramer-Rao Lower Bounds (CRLB) for TDOA and FDOA 
are  
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where Pn is the noise power, S( f ) is the Fourier transform 
of s( t ), Brms and Drms are the so-called RMS bandwidth and 
RMS duration, respectively [2]. Thus, the TDOA and 
FDOA Fisher information carried by x(t) are  
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respectively. If the signal s(t) is confined to an appropriate 
interior range within (-T/2, T/2), we can see that for TDOA 
estimation, the high frequency components are more 
important than the low frequency components, whereas for 
FDOA estimation, the early/late components are more 
important than the middle components. Both FI(TDOA) and 
FI(FDOA) properly capture the impact of compression on 
TDOA accuracy and FDOA accuracy, so an operational R-
D method can be developed based on maximizing these two 
Fisher information.  

The design of our compression method can be 
expressed as transform coding with maximizing FI(TDOA) 
and FI(FDOA) simultaneously. Given some orthogonal 
signal decomposition (e.g., wavelet transform, DFT, etc.) 
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of the signal to be compressed, we wish to select a subset 
Ω~  of coefficient indices and an allocation of bits 

}~|{ Ω∈= ibB i
to those selected coefficients such that the 

signal given by  

                   ∑
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where }~|~{ Ω∈ici are the quantized version of the selected 
coefficients, maximizing FI(TDOA) and FI(FDOA) while 
meeting the rate constraint given by  

         ∑
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≤
i
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In our simulation, orthonormal wavelet transform is 
chosen to perform the transform coding because it gives us 
frequency resolution as well as time resolution, which make 
it possible to maximize FI(TDOA) and FI(FDOA) 
simultaneously. Wavelet transformed coefficients ci are 
divided into M cells according to frequency resolution and 
time resolution, if we assume the quantization noise is 
additive noise to the signal, modifying (20) and (21), the 
optimal solution to the quantization of signal for TDOA and 
FDOA estimation is then to maximize the following two 
object functions under some rate constraint,  
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where Wj is the number of coefficients in the jth cell and 
2σ is the variance of the noise. 

If we weight (25) and (26) according to their relative 
importance and sum them we get a single objective function 
to be optimized: 
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where α is a parameter used to control the relative 
importance of TDOA accuracy and FDOA accuracy. This 
result now gives us the ability to compress in a way that 
allows a trade-off between the impacts on TDOA vs. FDOA.  
So in cases where one is less important we can compress to 
ensure the other has a small impact due to the compression. 

To demonstrate this we explore the range of solutions we 
get by compressing optimally with respect to D(α) as we let 
α vary over the interval [0,1]. The simulation results are 
shown in Figure 2, where results for two different SNR 
scenarios are shown. FM radar signal was generated and a 
time-delayed and doppler-shifted version was also created. 
White Gaussian noise was added to each to yield desired 
SNR1 and SNR2 on the two signals. To provide a reference 
case, these two noisy signals were cross-correlated without 
compression to estimate the TDOA and FDOA value of 
delay and doppler shift between the two signals. The 
wavelet coefficients are quantized at average rate 1.5 bits 
per sample, and no entropy coding is used. The two axes 
show the TDOA and FDOA estimation error standard 
deviation relative to that achieved with no compression.  
For each SNR scenario a square symbol ( ) shows the 
single operating point achievable when optimizing the 
wavelet-based compression scheme relative to the standard 
MSE distortion criteria.  The star symbols (*) show the 
points achieved in the simulation using our proposed 
Fisher-information-based distortion measure as the value of 
α is varied; the dashed line is a visually-fit curve to show 
the general trend as α is varied. In Figure 2, as α increases, 
the TDOA accuracy is increased while FDOA accuracy is 
decreased. Given certain a priori knowledge (likely coming 
from a user’s query and request to the sensor network) it 
would be possible to know which value of α should be used.  
This simple example illustrates that the proposed 
framework can allow trading between simultaneous 
estimation tasks; in a more realistic scenario we can 
imagine multiple users exploiting the same set of network-
collected data, which gets compressed based on a “central-
command-determined” priority among these users’ 
importance.  

  According to [7][8][9], besides Fisher information, the 
accuracy of location estimation also highly depends on 
geometry of target and the sensors.  In some geometries of 
location scenario, either FDOA or TDOA accuracy 
contributes nothing to the overall location accuracy, 
however in other scenario, TDOA and FDOA are both 
important. Therefore, the relative importance of TDOA and 
FDOA can be determined by the geometry of target and 
sensors. This leads to an idea that we should first send a 
small amount of data – enough to roughly determine the 
geometry – and then choose the best suitable operating 
compression point in Figure 2. 

 
B. Single Parameter With Detection  

The scenario considered in this case is detecting the 
presence of a signal and then estimating TDOA between a 
pair of sensors in the presence of AWGN. For the AWGN 
model, the Chernoff distance and Kullback-Liebler distance 
are[3] 
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Figure 2:  Results showing trade-off in the two-parameter case.    
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which are both proportional to SNR. If the quantization 
noise is assumed to be AWGN, and still use the 
orthonormal wavelet transform as we did in the above 
example, we have the following objective functions to 
maximize 
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We can see from (30) and (31), the distortion function 
derived from Chernoff distance and Kullback-Liebler 
distance in the AWGN mode is equivalent to MSE. Using 
the framework above we can derive the following Fisher-
information-Kullback-Liebler-based distortion measure 
that should be maximized by the compression method 
under a rate constraint in a similar way. 
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where α is a parameter used to control the relative 
importance of TDOA accuracy and binary decision 
accuracy. Similarly, (32) gives us the ability to compress 
in a way that allows us to trade-off between the impact on 
TDOA vs. Binary Decision. As above, to demonstrate this 
we explore the range of solutions we get by compressing 
optimally with respect to D(α) as we let αvary over the 
interval [0,1], the same FM radar signals used in the above 
example is used here, the quantization bit rate is still 1.5 
bits per sample and probability of false alarm is 0.1. The 
simulation result is shown in Figure 3. The vertical axis 
shows the impact of compression on TDOA accuracy 
while the horizontal axis shows the impact on the 
probability of error. The star symbols (*) show points 
achieved in the simulation using our proposed Fisher-
Kullback-Liebler-based distortion measure as the value of 
α is varied; the dotted line is a visually-fit curve to show 
the general trend as α is varied.  We see that by varying 
the value of α we can accomplish a trade-off between the 
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detection performance and estimation performance. As α 
increases, the TDOA accuracy is increased while 
probability of error is increased. As in the first example, a 
priori knowledge from user queries can be used to adjust 
the compression algorithm for optimal operation. 

 
Figure 2: Results showing trade-off in the one-
parameter & binary detection case. (SNR1 = 10 dB, 
SNR2=40 dB) 
 
IV. CONCLUSION 

The major novel contributions of the paper are the 
following:  

 
• Compression methods within sensor 

networks must take into account the fact that 
the data collected in a sensor network is 
likely to be used for multiple inference tasks 
– those multiple inferences may originate 
from a single user or from multiple users.  
Some inferences may have higher accuracy 
needs than others. 

• To address this issue compression algorithms 
should be based on combinations of 
distortion measures that are chosen 
specifically for the inferences to be made.  
The Fisher information is the natural choice 
for estimations while the Chernoff and 
Kullback-Liebler distances are natural 
choices for decisions. 

• A framework is developed under which these 
ideas can be addressed and explored.  The 
framework is applied to examples that show 
that such trade-offs do indeed exist and can 
be addressed within this framework. 

• Further work will focus on showing how 
these ideas can be used in realistic sensor 
network scenarios. 
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