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ABSTRACT

Sensor networks typically perform multiple inference tasks and
compression is often used to aid in the sharing of data.
Compression degrades the inference accuracy and should be
optimized for the tasks at hand. Unfortunately, simultaneous
optimization for multiple tasks is not generally possible - typically
a fundamental trade-off exists that has not been previously
explored. A particularly relevant and interesting scenario occurs
with a task-driven sequence of inferences. This paper develops a
framework for data-optimized data compression for the case of
multiple inferences. In particular, the Fisher information matrix
(FIM) is used to derive a suitable scalar distortion measure for
multiple estimation tasks, while the Chernoff distance is used for
decision tasks. Theoretical results are presented that support the
use of this particular scalar FIM-based distortion. The method is
demonstrated with application to the sequential problem of first
detecting a common intercepted signal among sensors and then
once detected progressing to the location of the source.

1. INTRODUCTION

It is important to design operational data compression methods that
enable rapid sharing while causing only minimal degradation of
the quality of the inferences to be made by the sensor network.

To design optimal decentralized compression algorithms that
support inference tasks it is essential to have appropriate, useable
metrics that measure the impact of rate reduction on the inference
quality. In this paper, the Fisher information matrix (FIM) is used
to assess the impact on estimation accuracy while the Chernoff
distance is used to assess the impact on decision accuracy. The
advantages of these distortion measures include: (i) the reciprocal
of the FIM yields the Cramer-Rao Lower Bound on the variance of
any unbiased parameters estimator and the Chernoff distance is a
tight upper bound on probability of detection, (ii) both are
independent of the specific choice of inference processing [1], (iii)
both are additive for independent observations (which is very
important because the network-wide optimal compression can be
achieved in a decentralized way), (iv) they are invariant under
application of invertible maps to the data and are decreased under
application of quantization, which makes possible transform
coding. Although these measures have been used for single
inference tasks [2],[3], an important aspect not widely previously
considered is that sensor systems generally have multiple inference

1-4244-0469-X/06/$20.00 ©2006 IEEE

V-1057

Andrew Noga

Air Force Research Lab
Rome, NY
Andrew.Noga@rl.af.mil

tasks that have conflicting compression requirements [4],[5]. This
paper explores how multiple measures (for the multiple inferences)
drive the specification of new data compression methods needed to
support multiple sequential and simultaneous inferences; we focus
on the problem of emitter location using Time-Difference-Of-
Arrival (TDOA) and the Frequency-Difference-Of-Arrival
(FDOA).

In Section 2, we address how to map the FIM into various
scalar distortion measures for simultancous multi-parameter
estimation. Then we address simultaneous estimation and
detection. In Section 3, we propose and explore a novel task-
embedded compression approach for sequential inference tasks.

2. SIMULTANEOUS INFERENCE TASKS

2.1 Transform Coding Framework

Suppose we have K sensor nodes that compress their received
signal data to send to a fusion center that estimates an unknown
parameter vector 0 and decides the presence of a common signal of
interest at the nodes. At node S; we model the data vectors as

X, =75,0)+w,, €))
where s,(0) is an unknown deterministic signal vector dependent
on the unknown deterministic parameter vector 0; ¥, represents a

hypothesis function, that is, if s,(0) is present, y; #0 ; each wy is
an independent noise vector whose covariance matrix X, is

known or estimated. In this paper, for simplicity, we assume that
w; is zero-mean Gaussian noise. We orthonormal (ON) transform

x; toy, (the coefficients {,} ) with a unitary matrix ®. The
coefficients y, are then quantized using a set of bit allocations B
= {b,|n=1,2,..., N }. The compressed coefficient vector y, is

ik = (I)Xk + €

, @
= 75k (0) + o +g;

§,(0)=ds; (0) holds the signal coefficients

£,.,(0), vector @, holds the noise coefficients @, ,,, and g, is the

where vector

quantization noise vector with covariance
Q, =diag{ q: . _”,qkzw}. We seck to allocate B to optimize an

estimation/detection-centric distortion measure subject to rate
constraint )’ b <R. The {q;,} depend on b, and can be

calculated either by a closed form or an approximation [5].

2.2 Compression for simultaneous estimates
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In this section, we assume that all sensors intercept the same signal
(7, =1) and address the compression to achieve trade-offs among

the multiple unknown parameters 0. Without loss of generality, we
focus on the two parameter case.

Whenever the sensor noises w;, are independent, the FIMs are
additive so we only need to consider the effect of compression on

the FIM of the data at a single sensor S;. The FIM for 0 based on
the data from sensor S; is the 2x2 matrix
J, =2Re{G/%'G,} 3)

where G, =[0&,(0)/00, 0%,(0)/06,] is an Nx2 matrix of the
signal’s sensitivities to the parameters. The FIM specifies an
information ellipse via 8"J'0=1 with semi-axes along the FIM’s
eigenvectors and whose lengths are proportional to the square roots
of the eigenvalues — the larger this ellipse the better. Lossy
compression of the transformed vector y;,(0) changes the FIM,

making the data inferior for estimation of 0 and thus shrinking
and (perhaps) rotating the information ellipse. Under the model in
(2) we have that the FIM after compression is

J, =2Re{GJ(X,+Q,)"'G,}. “
Note when we evaluate G; in (4) and elsewhere, we have to
replace the unknown &, (0) with the observed 7y, .

2.2.1. Determinant of FIM
The area of the FIM ellipsoid is proportional to /44, , where A;

is the i eigenvalue of the FIM. Thus, maximizing the area is
equivalent to maximizing det(J), which has been used as an
objective function in the solution of various engineering problems.
It is well known that additive distortion yields simpler operational
rate-distortion optimization schemes [6],[7], whereas the
determinant provides a multiplicative distortion function.
However, under fine quantization, we develop an additive
distortion that allows simpler maximization of the determinant.

For convenience, consider that the noise is an i.i.d. process
with variance 07, i.e., X, =071 and that the signal data is real

valued. The determinant of the post-compression FIM becomes

det(:],() = L“det(Gsz)det(I -R,). )
o,

k

where R, =(G;G,)"'G; diag{....q;,, /(0; +4;,)...1G,) .
det(J,) s

maximizing det(I-R,). If {e,e,} are the eigenvalues of R,,

Therefore, maximizing equivalent  to

the latter product part of (5) becomes
det(I-R;)=1-tr(Ry) + e, . 6)
Proposition (see [5] for proof): Under the fine quantization

condition, maximizing det(j ) is equivalent to minimizing tr(Ry).

We can further simplify tr(R;) as follows:

2
N-1 Vi4f,
uR)=D 55— (N
Ok t4qin

where v, is the n™  element of the vector v given by

v=diag(Gk(Gka)_le)- Thus, a compression algorithm for

approximately maximizing the determinant of the FIM can be
formulated as

. N-1 Vi 2.,, . Y
mgln{z“)#} subject to ;b, <R. (8)
We have seen that this works well even for coarse quantization.

Sometimes, one may wish to favor the accuracy of one
parameter at the expense of the others. This allows user-imposed
trade-offs between parameters, which is important in multiple
parameter estimation problems where a user may favor accuracy
on a subset of the parameters. The determinant can not fulfill this
need [5], but the following perimeter approach can.

2.2.2. Weighted trace of FIM
The perimeter of the ellipse is quite complicated to compute

exactly; however, it is approximately proportional to /4 +4, .
Thus, maximizing the perimeter is (approximately) equivalent to
maximizing tr(j +) - Note that this allows importance-weighting
on the accuracy of the two parameters: we can use a weighted trace
W'[l‘(j D= al L, t+a —a)j , » Where ¢ is an importance-controlling
parameter satisfying 0<a <1. However, a concern is the effect
that compression can have on the tilt of the ellipse, which is not
explicitly captured by these trace-based measures. This is of most
concern when the ellipse is highly eccentric. The following
theorem shows that this is not a serious issue because the post-
compression ellipse will always reside inside the original ellipse;
thus, for a highly eccentric original ellipse, compression is not able
to greatly change the orientation of the ellipse.

Theorem (see [5] for proof): The post-compression FIM ellipse
07J7'0 =1 lies inside the original FIM ellipse 8"J'0=1.

In summary, the perimeter approach is to compress the
transformed coefficients y, to satisfy

A A N
m?x{(x]“(f(k)+(1—0{)J22(f(k)}, subjectto Y b, <R. (9)
n=1

where J .(2,) is the ii™ element of the data-computed FIM and
the maximization is done over all allocation sets B that satisfy the

rate constraint. See [2] for the detailed computation of .}“, ) -

2.2.3. Compression for joint TDOA/FDOA
Two received signals at sensors S; and S, with unknown TDOA
n, and FDOA v, can be modeled by:
x,[n]=s[n—(n, +n,/2)]e’ "> +w[n]
x,[n] = s[n—(ny —n, /2)]e’" "> +w,[n]
n=-N/2,-N/2+1,...,N/2
where s[n] is a complex baseband signal, vy and n, are unknown
nuisance parameters that need not be estimated, and w,[n] are

(10

uncorrelated complex Gaussian white noise with variances 0',-2.

The signal-to-noise ratios (SNR) at the i sensor is SNR; We
assume here that signal x,[#] at sensor S; is compressed and sent to
sensor S, where it is decompressed and then used with x,[n] to
perform joint TDOA/FDOA estimation.

According to (10), and motivated by [2], the weighted-trace-
based TDOA/FDOA distortion measure is
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2 Zlc |2

wir(J,) = az a)z ‘"6{""’? . an

Jj=1 k k/ k k.j

7 Y,

nE{j block}

where {¢,} are wavelet packet coefficients of x; and are grouped
into M blocks; {g; ;+ are the quantization noise variance in the jt

block, and J; and ¢ are the frequency and central time, respectively,
of the j™ block. Blts are allocated to the coefficients using the
method of [7] to maximize (11) for a given rate R. Determinant-
based TDOA/FDOA distortion is similarly defined in (7).

Simulation results for the weighted trace method and the
determinant method are shown in Figure 1, where the MSE method
is also shown for comparison. We see the inherent trade-off
between TDOA and FDOA that is controlled by the choice of a;; it
is possible to adaptively choose o [4],[5]. In contrast, only one
operating point is obtained from the determinant method.

2.3 Compression for simultaneous estimation/detection

The fusion sensor might need to detect a signal first and then
estimate parameters. The Chernoff distance of all the sensors’ data

{X, )+, is the sum of the Chernoff distance of y, when the noises

are independent. Although Chernoff distance has been used [3] to
quantify the degradation of compression, here we explore the
tradeoffs between conflicting requirements of detection and
estimation. In order to keep the distortion measure scalar and
additive as well as simple, we use the following. A FIM-Chernoff-
based distortion measure for joint detection and multiple
estimations is given by

max|By (3, 0) + (1- B, ()], subjectto 3o <R, (12)

n=1

where y represents any form of the FIM measures in Section 2.2,
1, (3,) is the Chernoff bound of j, and B is a parameter used to
control the relative importance of estimation accuracy and
detection error. See [3] for details on how £ (¥,) is proportional

to SNR;, when w;, is Gaussian. The measure in (12) will be further
considered in compression for sequential inference tasks.

3. COMPRESSION FOR SEQUENTIAL TASKS

In a sensor network there are cases where inference tasks are
naturally done sequentially and therefore the sharing of data can
also occur sequentially. For example: first the data is shared
among the sensors to decide if K sensors have intercepted signals
from the same source; then, an estimation task would be performed
to locate the source. As we know, the compression requirements
for the different tasks are different and usually conflicting.
Therefore, optimized compression to handle sequential tasks
requires what we call “task-embedded compression” here: the
transmitting sensor constructs the optimal task-embedded data
stream to send only the data needed to supplement the already-
delivered data for the current task.

On the other hand, to meet aggressive time-line requirements
between the m™ and (m+1)" task, it may be desirable to force the
previous m stages to send data that would ultimately be helpful in
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Figure 1: Comparison between determinant and weighted trace

methods for compression ratio 3:1 and SNR; = 15 dB.

the (m+1)" stage. For example, we wish to reduce the (m+1)-th
stage bit rate without reducing inference quality at the (m+1)"
stage. In the previous m stages, we could allocate some bits which
are eventually beneficial to the inference accuracy of the (m+1)"
stage. The inference qualtiy will be worse at the first m stages but
the total rate up to the (m+1)-th stage will be about the same. This
can lead to a situation where in each stage there might be multiple
simultaneous inference tasks that generally have conflicting data
compression requirements; thus, we must use (12) and choose a
suitable /3 to achieve the proper tradeoft.

3.1 Example: sequential detect-then-TDOA

Consider the scenario where multiple sensors are deployed to
detect and then locate RF emitters. At first the sensors would
share collected data for the purpose of detecting if they have
jointly intercepted a common signal. After detection, further data
is shared among the sensors to estimate the emitter’s position using
the TDOA method. In these two sequential stages, our task-
embedded compression can be applied as follows: (i) the data
stream that is shared during the detection phase is optimally
compressed for detection, then (ii) send the additional data “layer”
needed to optimally estimate TDOA. As stated in Section 2.3, the
Chernoff-distance-based distortion measures for the detection task
depends on the SNR of post-compressed data; however, according
to [2], the Fl-based distortion for TDOA depends on quadratically-
frequency-weighted DFT coefticients.

Stage 1: Maximizing SNR for the Detection Task:

N/2 ‘X ‘ N/2 ‘Xk [n]‘z
Maxlmlze Bx —————+(1-p)x —
200 +4,(b,) N0+ (b)) | (13)

subject to me <

n=0

where X;[n] is the DFT of the data x;, g;(b,,) is the quantization

noise power as a function of b, bits allocated to that coefficient,

nl
Rp is the rate for Stage 1, and the parameter  controls the tradeoff
between TDOA estimation and detection. ~ Setting f = 0 causes
this allocation to be done with no consideration of the Stage 2 task
of TDOA estimation; however, increasing f forces more
consideration of the subsequent Stage 2 task.

Stage 2: Maximizing FI for the TDOA Estimation Task:
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In this stage only TDOA is of interest and its accuracy needs
to be refined. Thus we will maximize

o N/2 n’lx [n]2 . N-1
Maﬁleze > [# subjectto  >.b, <R, (14)

w2 00+ (b, +b,) =

nl

where Ry is bit budget for the Stage 2. and the {b,} are the bits
already allocated in the first stage.

The case considered above is illustrated in Figure 2 where the
rates for different tasks are held fixed and performance is changed
during the trade-off: the variation of § enables the tradeoffs for the
detection during the first detection stage and the location accuracy
during the second estimation stage.

P, o
B
® A Bs Ygo—
Pu,p ® £ R P
® B P ——
Bs ’
B1
R, Ry

Figure 2: Conceptual illustration of the trade-off accomplished via
choice of the f§ parameter.

For the simulation results below, similar to Section 2.1.3, we
assume that signal x,[z] at sensor S; is compressed sequentially
and sent to sensor S,, where the sequential tasks of detect-then-
TDOA are performed. Moreover, we impose the conditions: during
the first detection stage, in order to satisfy a rate constraint Rp, the
data is compressed with a compression ratio of 8:1 (without
entropy coding); on the other hand, during the second stage
estimation, in order to satisfy a rate constraint Rg, Stage 2 bits are
added such that the total compression ratio is 5:1 (without entropy
coding). In terms of practical coding, unlike the simultaneous case,
quantizers must be changed to embedded quantizers in order to
support the task-embedded data stream between the sensors.
Simulation results are shown in Figure 3, where the actual
probabilities in the detection stage were not evaluated because that
would take tremendous time.

The results in Figure 3 show the various SNR-o} points that
can be achieved for fixed Rp and Rg; the points in the upper right
corner favor detection while those in the lower left corner favor
estimation. Note that the values of the post-compression detection-
stage SNR were quite low; this is due to the large compression
ratio that was imposed. The coherent processing gain of cross-
correlation-based detection will raise these values significantly.
Furthermore, detection accuracy is not only dependent on post-
compression SNR but also on the size of data; any increase in SNR
indicates a significant decrease in error probability for large

sample sizes. The specific operating values shown in Figure 3 are
of less importance than the fact that the simulation results verify
that the algorithm achieves a curve of trade-off points as expected.
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Figure 3: Simulation results illustrating the achieved trade-offs.

4. CONCLUSION

By recognizing that multiple inferences (simultaneous and/or
sequential) generally have conflicting compression requirements,
we developed the theory and several algorithms for both the
general simultaneous estimation problem and the simultaneous
estimation/detection problem. We also proposed and explored a
task-embedded compression approach to support sequential
inferences tasks. More importantly, all algorithms are based on
additive rate-distortion measures and are therefore very effective to
be directly applied in current distributed sensor systems.
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