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Abstract—In emitter geo-location estimation systems, it is well
known that the geometry between sensors and the emitter can
seriously impact the accuracy of the location estimate. Here we
consider a case where a set of sensors is tasked to perform
a sequence of location estimates on an emitter as the sensors
progress throughout their trajectories. The goal is to select the
trajectories so as to optimally improve the location estimate at
each step in the sequence. To build the optimal trajectories, the
aircraft, at their current locations, need to know their opt imal
next states at the time of next estimation, under the constraint of
a reachable set due to limited reachable velocity or thrust.In this
paper, we propose a one-step method to tackle the optimal next
state(ONS) problem using the Particle Swarm Optimization(PSO)
by solving the optimal amount of applied thrust along the flying
trajectories. Simulation results show that the proposed method
dramatically improves the estimation accuracy along the flying
trajectories, compared to the random walk and constant velocity
scheme. We also show that the estimation accuracy performance
is also insensitive to the problem dimensionality.

I. I NTRODUCTION

Emitter location estimation has been proved to be a widely
applicable technique in many fields. Specifically, we consider
the scenario that a group of airborne sensors try to passively
estimate the location of a non-cooperative RF emitter on a
battlefield. In recent interest, those sensors are placed on
small and slow movingUnmanned Aerial Vehicles(UAVs).
At each time instance, the UAVs fly at certain velocities
within the reachable velocity range. We consider that the
sensors employ Time Difference of Arrival (TDOA) and
Frequency Difference of Arrival (FDOA) to estimate the
geo-location of the emitter, in which case, UAVs must be
paired to estimate those values. For simplicity, we will not
explore the effect of optimal sensor selection and pairing [1],
rather we simply consider that the UAVs are paired arbitrarily.

In emitter geo-location estimation systems, it is well
known that the geometry between sensors and the emitter
can seriously impact the accuracy of the location estimate.
Here we consider a case where a set of sensors is tasked to
perform a sequence of location estimates on an emitter as
the sensors progress throughout their trajectories. The goal
is to select the trajectories so as to optimally improve the
location estimate at each step in the sequence. The position
and velocity of the sensor at the scheduled time of the next
estimation task is called the sensor’s “next state”, as defined
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Fig. 1. The Multimodal Characteristics of the Emitter Location Estimation
Problem

in [2]. To build the optimal trajectories, each aircraft, attheir
current states, needs to know its reachable set of next states,
computes the optimal next states within the reachable set,
and then solves a state/control-constrained problem to steer it
to the optimal next state in a time coordinated manner.

To illustrate the challenging nature in determining the
optimal next state, among other steps, consider 4 sensors
paired into two distinct pairs and consider the optimization of
the X and Y velocities of just one sensor of these 4 sensors.
As discussed later we use the trace of the CRLB matrix of
the geo-location estimate as our objective function, whichis
shown in Fig. 1 for this case. A similar lack of convexity
calculated entropy as an objective function forced [2] to
resort to exhaustive search for the best next velocity only on
a predefined grid to make the problem manageable in real time.

It has been demonstrated in many cases, those kind of
optimization problems are hard to solve using classical
derivative-based optimization approaches. Moreover,
derivative-based approaches in multimodal problems are



very likely to converge to local minima in which case, the
problem would end up with suboptimal solutions. Some of
those problems are even not differentiable at certain points,
which greatly restricts the usefulness of derivative-based
approaches in multi-dimensional and multimodal problems.
An obvious optimal scheme is brute force, also known as the
grid search approach, but it requires a prohibitive amount
of computations, especially in multi-dimensional problems,
which is generally infeasible to apply in real time and
resource constrained applications.

A common resort for multi-dimensional and multimodal
optimization problems is the metaheuristic approaches, e.g.
Genetic Algorithm(GA), Ant Colony Optimization(ACO),
and Particle Swarm Optimization(PSO) etc. Particle swarm
optimization (PSO) was originally proposed by Kennedy
and Eberhart in 1995 [3]. It is widely adopted and focused
by researchers due to its simple implementation and fast
convergence. The original intent was to graphically simulate
the graceful but unpredictable choreography of a bird flock.
Previous research [4] indicates that PSO is relatively more
capable for global exploration and converges faster than most
major metaheuristic algorithms.

We test the algorithm to demonstrate the accuracy
improvement of the algorithm. Results show that the
proposed PSO-ONS (Optimal Next State) algorithm improves
the accuracy of the estimation along the platform flying
trajectories dramatically. We also show the proposed method
is relatively insensitive to the problem dimensionality which
indicates the robustness of the algorithm.

The rest of the paper is structured as follows. The location
estimation problem is described in Section 2, and the PSO
algorithm is briefly introduced in Section 3. Section 4 presents
the simulation scenarios and shows the experimental results.
Computational complexity issue is discussed in Section 5.
Section 6 concludes the paper with comments on future work.

II. PROBLEM SETUP

Without loss of generality, we assume there are totally
Ns sensors (and assume each UAV is equipped with a
single sensor, so we can use the term sensor and aircraft
interchangeably), and consider a 2-D Cartesian plane where
the true emitter is located at the position{xe, ye}. The
p = {p1,p2, · · ·pNs

} and v = {v1,v2, · · ·vNs
} represent

the sensor positions and velocities, wherept = {xt, yt}
and vt = {vxt, vyt}. Sensors intercept the signal and make
TDOA and FDOA measurements at certain instants. At each
time interval, a certain amount of thrust is applied on each
sensor which is denoted asut = {uxt, uyt}.

A. Dynamic Model

Here we propose a dynamic model in which the sensor
position and velocity update rule is defined. At statet + 1,
the position vectorpt+1 = pt + vt+1 · ∆t, where∆t is the
time interval between two adjacent states. From the Newton’s
Second and Third Law, thrust applied on an aircraft at each
state changes the velocity of the aircraft, and the dynamics
could be described asvt+1 = vt + 1

m
· ut+1 · ∆t, wherem

is the mass of the aircraft. Written in the matrix form, the state
dynamic model is,

(

pt+1

vt+1

)

= A

(

pt

vt

)

+ But+1 (1)

whereA andB are

A =









1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1









, B =









0 0
0 0
1

m 0
0 1

m









(2)

and‖ut‖ ≤ umax, ‖v‖ ≤ vmax.

B. TDOA/FDOA Estimation

We employ the idea of using TDOA and FDOA to estimate
the emitter location [5], in which case sensors are being paired
to get TDOA and FDOA measurements. How sensors are
paired in order to maximize the accuracy of the estimation is
beyond the scope of this paper. Interested readers could refer
to [1]. We assume that sensors are paired arbitrarily. Before
using TDOA and FDOA measurements to estimate the emitter
location, we must first estimate TDOA and FDOA themselves
from the noisy signal data. Assume theith and thejth sensor
are paired, then the noise free TDOA(τij) and FDOA(ωij)
measurements can be deterministically computed as follows,

τij =
1

c

[
√

(xi − xe)2 + (yi − ye)2

−
√

(xj − xe)2 + (yj − ye)2
]

(3)

ωij =
fe

c

[ (xi − xe)vxi + (yi − ye)vyi
√

(xi − xe)2 − (yi − ye)2

− (xj − xe)vxj + (yj − ye)vyj
√

(xj − xe)2 − (yj − ye)2

]

(4)

wherec is the speed of light.

In the presence of noise, the TDOA and FDOA mea-
surements will be perturbed by error, i.e., for thepth pair,
p ∈ {1, 2, · · · , Ns/2},

τ̂p = τp + ∆τp (5)

ω̂p = ωp + ∆ωp (6)



Define the estimatêθ = {τ̂ , ω̂} which can be obtained
using the Maximum Likelihood(ML) estimator [6]. Due to
theAsymptotic propertyof the Maximum Likelihood estimator
[7], as more data observations are collected, the distribution of
the estimate becomes Gaussian, i.e.,θ̂m = {∆τ̂m, ∆ω̂m}T ∼
N (0,FI−1

m ). FIm is the Fisher Information Matrix(FIM) of
the estimatêθm = {∆τ̂m, ∆ω̂m}T of the mth pair, defined
as,

FIm = 2Re

[

∂~sH
m( ~θm)

∂ ~θm

C−1
m

∂~sm( ~θm)

∂ ~θm

]

(7)

whereCm is the covariance matrix of the AWGN among two
sensors in themth pair, sm denotes the received signal, and
~θm is the actual TDOA and FDOA measurements. However,
the result given in (8) requires knowledge of the signal
and analytical results for the derivatives, [8] has shown that
(8) can be computed numerically using the data measurements.

We define the Fisher information matrix for the estimator
[θ̂1, θ̂1, · · · , θ̂Ns/2] as follows,

Jθ =











FI1 I12 · · · I1Ns/2

I21 FI2 · · · I2Ns/2

...
. . .

. . .
...

INs/21 INs/22 · · · FINs/2











(8)

whereIij , i 6= j ∈ {1, 2, · · · , Ns/2} is the cross term FIM
betweenith and jth pair. Note that we assume the sensors
are paired arbitrarily and no sharing among pairs, hence the
Iij , i 6= j ∈ {1, 2, · · · , Ns/2} equal zero.

C. Emitter Geo-Location Estimation

After TDOA and FDOA are estimated by the Maximum
Likelihood estimator, those TDOA and FDOA estimates are
further used to estimate the emitter geo-location. From the
asymptotic assumption of the TDOA/FDOA MLE, we can
take the TDOA/FDOA estimates as Gaussian and derive the
MLE for the emitter geo-location, which is a Weighted Least
Squares estimator. It’s clear that in (3) and (4), TDOA and
FDOA measurements are nonlinear in the emitter location
parameters ([xe, ye]) we wish to estimate, therefore there is
no closed form solution [7]. The Nonlinear Least-Squares
with Gauss-Newton method is applied to estimate the emitter
location.

Using the iterative Nonlinear Least-Squares algorithm, the
estimate in each iteration is represented as below [9] [7].

x̂n+1 = x̂n + (HTJθH)−1HTJθ∆f(x̂n) (9)

wheren is the iteration time,H = [HT
1 , · · · ,HT

Ns/2], and

Hm =









∂ ~θ1

∂xe

∂ ~θ1

∂ye

...
...

∂ ~θNs/2

∂xe

∂ ~θNs/2

∂ye









is the Jacobian matrix of themth pair of sensors, andT
denotes the transpose.∆f(x̂n) = H[x − x̂n] + v is the pre-
diction error due to the Taylor series approximation when
applying Gauss-Newton method. And theCrámer-Rao Lower
Boundof this problem can be represented as,

var{x} ≥ (HTJθH)−1 (10)

We could draw an ellipsoid of the CRLB matrix, the area
of which corresponds to the covariance of the estimation.
Our goal is to find the optimal next state for each sensor
based on the current received signal, the current geo-location
estimate and sensor nav data, i.e. the estimation accuracy at
those optimal next states is maximized, but subject to the
vehicle velocity and thrust constraint. To achieve this goal,
technically the CRLB of the emitter location estimator should
be minimized. Therefore, the optimization problem could be
stated as,

arg min
u

det

[

(

k
∑

i=1

HT
i JθHi)

−1

]

(11)

s.t. ‖ui‖ ≤ umax

In (11), we use the determinant of the CRLB matrix as
the evaluation criterion for estimation accuracy. However,
[10] has shown that using the determinant as a single-value
criterion has several drawbacks which may limit it to be a
suboptimal solution in some case. The authors have also
shown that the trace of the CRLB matrix is a good alternative
to the determinant, and at the same time, mitigates major
drawbacks of the determinant operator. Here, we accept the
claim and use the trace instead of the determinant as the
single-value evaluation of the estimation accuracy.

According to the dynamic model defined earlier, sensor
positions can be calculated usingpt+1 = pt + vt+1 ·∆t, so
actually we only need to optimize over sensor velocities which
only depend on the initial velocities and thrusts applied in
each state. In the 2-D case for example, if we haveNs = 10
sensors, the number of variables to be optimized over is
Ns × 2 = 20, which is fairly large. Moreover, it’s also clear
that (11) is not a convex optimization problem. Performing
classical optimization approaches even on resources-limited
UAVs is computationally expensive. In the next section, we
briefly discuss a metaheurisic method called theParticle



Swarm Optimizationto cope with this multivariate multimodal
optimization problem.

III. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) is a population-based
evolutionary algorithm which is generally inspired by
biological evolution behavior. Similar to GA, PSO is also
an evolutionary algorithm based on swarm intelligence. But,
unlike GA, PSO has no explicit evolution operator such as
crossover and mutation, instead of simple operators including
additions and multiplications in its iteration equations,
which simplifies the algorithm and makes the algorithm less
computational intensive.

In PSO, the potential solutions, called particles, fly through
the solution space by following the current optimal particles.
Particles in the entire swarm are initialized randomly in the
entire D-dimensional solution space. During a run, particles
update their velocities and positions according to the best
solutions found so far by themselves and the entire group
jointly. Since the algorithm was first reported in 1995 [3],
hundreds of PSO variants have been proposed in the literature,
and have been successfully examined in real world applica-
tions. Comparison results have shown that most PSO variants
present similar results in the early part of their convergences.
In real time applications like the optimal next state, reaching
a reasonable solution while occupying limited amount of
time and computational power should be given the highest
priority. Neither large number of fitness function evaluations
nor additional complex operation is feasible. Therefore, the
PSO algorithm with inertia weight [11] is employed in the
present paper, which can be represented mathematically as
follows,

vid(t + 1) = w(t) × vid(t) + c1 × rand1(·)
×(pid − xid) + c2 × rand2(·)
×(pgd − xid) (12)

xid(t + 1) = xid(t) + vid(t + 1) (13)

1 ≤ i ≤ N, 1 ≤ d ≤ D

where N is the number of particles,D denotes
the dimensionality; Vi = (vi1, vi2, · · · , viD),
vid ∈ [−vmax, vmax] is the velocity vector of the particlei.
Similarly, Xi = (xi1, xi2, · · · , xiD), xid ∈ [−xmax, xmax]
is the position vector of the particlei which is a potential
solution in the solution space. The quality of the solution
is measured by the value of a fitness function (commonly
the objective function);w(t) is the inertia weightdecreasing
linearly from 0.9 to 0.2 during a run; c1, c2 are positive

constants, called theacceleration factorsgenerally set to 2.0
[11]; rand1(·) andrand2(·) are random numbers distributed
uniformly over the range[0, 1]; and pg, pi are the best
solutions discovered so far by the group and theith particle,
respectively.

In the t+1 step of iteration, particlei usespg andpi as the
heuristic information to update its own velocity and position.
The first term in (12) could be viewed as the diversification
term, while the second and third are the intensifications,
which could also be seen as the trustworthiness towards itself
and the entire social system, respectively. Therefore, group
diversification and individual intensification are carefully
balanced.

IV. SIMULATION RESULTS

To show how PSO-ONS algorithm improves the system’s
estimation accuracy along the optimal trajectories, we apply
the algorithm in each intermediate state to find the optimal
next state. In order to give quantitative result of estimation
accuracy improvement, emitter location estimation procedure
is performed in each of those optimal intermediate states.
For comparison purposes we also show results for two other
schemes: random walk and constant velocity. In the random
walk scheme the next optimal state is chosen randomly within
the reachable set and in the constant velocity scheme the
sensors continue to each next state along a constant velocity
path. The random walk attempts to achieve geometric
diversity through random selections; the constant velocity
approach mimics the naive idea of simply letting the sensors
continue to fly as they were originally.

In our experiments, we consider 6 sensors distributed
randomly over the space and are paired arbitrarily into three
disjoint pairs. Trajectories of which are optimized over all 6
sensors in the PSO-ONS scenario. We assume the received
signal-to-noise ratio varies as in free-space propagation
scenario [12]; the emitter signal frequency is 10GHz; the total
number of intermediate states for each aircraft is 20; time
between each intermediate state is∆t = 5s; and platform
velocity is bounded‖v‖ ≤ 100m/s and the applied thrust
‖u‖ ≤ 1000 Newton, which is a reasonable assumption for
UAVs [13]. The size of the particle swarm is 5, and we do
20 iterations in each PSO procedure. Emitter true location
is [40000/

√
2, 40000/

√
2]. Experimental result is shown in

Fig.2.

Fig.2 demonstrates the comparison of estimation error
between the PSO-ONS, the random walk and the constant
velocity schemes. Same set of sensor states are initialized
for all three cases, and therefore they have the same
initial accuracy. We can see that the estimation accuracy is
decreasing steadily along the flying trajectory while the other
two suffer performance fluctuation due to the multimodal
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Fig. 2. Estimation Accuracy Improvements
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Fig. 3. Optimal and Random Thrust on Vector Field

characteristics of the problem.

A sequence of the PSO-ONS optimized thrust applied
on a single platform is plotted in 2-D vector field, while a
sequence of random thrust is also shown in Fig.3. As random
thrusts drive the platform to move unintentionally over the
whole space, the platform moves towards a clear direction
along which more accurate estimation can be achieved.
Moreover, a wiggling behavior of the platform is clearly
seen along the optimal trajectory which allows the platform
to collect data which contains more differences in time-
of-arrival and frequency-of-arrival. This kind of movement
is desirable and beneficial to the location estimation in general.

Another advantage of the proposed PSO-ONS algorithm
is that the performance of PSO-ONS is insensitive to the
increasing problem dimensionality which shows the algorithm
is stable and expandable. We define the success rate as the
number of times PSO-ONS gets better estimation accuracy
than the random walk over the total number of simulation
runs. As we can see from Fig.4, as the number of sensors
increases, the dimension of the optimization problem increases
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Fig. 4. Sensitivity to the Problem Dimensionality

correspondingly. However, the success rate doesn’t change
drastically. WhenNs = 18, the dimensions of the problem
is 18×2 = 36 which is prohibitive for the grid search scheme
or even classical optimization methods.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

Simulation results above have provided strong evidence
that the proposed PSO-ONS algorithm achieves accurate
estimation. It could be also demonstrated that the proposed
method is computationally efficient, compared to some
straightforward brute force approaches, such as the grid
search scheme. Consider a scenario where 4 aircrafts are
deployed to perform the emitter location estimation. We have
already shown this optimization problem is 8 dimensional, and
further consider the vehicle thrust constraint is−100 ∼ 100
Newton, and the step length in the grid search is 5m/s, the
number of grid point of a single next optimal next state
computation would be408 = 6.5×1012 which is prohibitively
huge and not feasible to compute on a resource-constrained
real-time system. Even with a relatively coarse grid with
step length20m/s, the number of grid point would still be108.

On the contrary, the random walk and the constant velocity
schemes are the least computational expensive approaches.
Moreover, for the constant velocity case, no thrust needs
to be applied therefore it is the most energy efficient. If
the measurement of computational cost is the number of
evaluations of the trace of CRLB matrix, it only requires a
single function evaluation in each next state. However, in
terms of estimation accuracy, the random walk and constant
velocity schemes, as shown in Fig.2 suffer great fluctuations
and in general are less accurate than the proposed method.

The newly proposed PSO-ONS algorithm, while achieving
improved estimation accuracy, is also efficient in computations



and simple in structure, which make the proposed algorithm
applicable for real-world emitter location estimation problems.
In this paper, where we have 5 particles, each of which
iterates 20 times, the total number of computations within
each optimal next state calculation is 100, which is drastically
smaller than the grid search.

VI. D ISCUSSION ANDFUTURE WORK

This paper proposed a computationally efficient way to
determine optimal next states for UAVs to perform accurate
emitter geo-location estimation. Due to the multi-dimensional
and multimodal nature of the optimal next state problem, we
incorporated a widely-researched metaheuristic method called
the Particle Swarm Optimization (PSO) to attack the problem.
Simulation results demonstrate PSO is a promising approach,
in terms of high estimation accuracy and low computational
cost.

An issue worthwhile discussing is the communication cost.
The PSO optimization procedure doesn’t really introduce
much extra communication cost. The only information needed
to be shared among sensors is their position and velocities,
none of the actual data they collected needed to be transmitted
over the wireless channel. However the sensor network may
perform other estimation or tracking applications at the same
time, which may also need that information as well. An
example is to perform the optimal sensor selection and pairing
[1]. In such cases, only the optimized sensor positions and
velocities need to be sent back to sensors, which means even
less communication overhead. Note that the PSO optimization
we employ is a centralized algorithm which needs a “central
node” to perform the optimization. This central node might
be a powered node far away from the sensors. A more
realistic situation is that the central node is selected among
the sensors themselves. For robustness considerations, a
dynamic selection scheme, based on the remaining energy of
the sensors [14], might be applicable.

REFERENCES

[1] X. Hu and M. L. Fowler, “Sensor selection for multiple sensor emitter
location systems,” inProc. IEEE Aerospace Conference’08, Big Sky,
Nevada, Mar. 2008.

[2] N. E. Wu, Y. Guo, K. Huang, MC. Ruschmann, and M. L. Fowler,
“Fault-tolerant guidance and control of an airborne location sensor
network,” Special Section on Fault Diagnosis and Fault-Tolerant
Systems, International Journal of Control, Automation, and Systems, vol.
6, pp. 351–363, 2008.

[3] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc.
IEEE International Conference on Neural Networks(ICNN’95), Perth,
Australia.

[4] R. C. Eberhart and Y. H. Shi, “Particle swarm optimization: devel-
opments, applications and resources,” inProc. IEEE Congress on
Evolutionary Computation(CEC’01), Piscataway, NJ.

[5] P. C. Chestnut, “Emitter location accuracy using tdoa and differential
doppler,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-18, pp. 214–
218, Mar. 1982.

[6] S. Stein, “Differential delay/doppler ml estimation with unknown
signals,” IEEE Trans. Signal Process., vol. 41, pp. 2717–2719, Aug.
1993.

[7] S. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory, Prentice Hall, 1993.

[8] M. L. Fowler and M. Chen, “Fisher-information-based data compression
for estimation using two sensors,”IEEE Trans. Aerosp. Electron. Syst.,
vol. 41, pp. 1131–1137, July 2005.

[9] M. L. Fowler, “Radar location via frequency measurements: An
application of nonlinear least squares,” 2002.

[10] M. Chen and M. L. Fowler, “Data compression for multipleparameter
estimation with application to emitter location systems,”IEEE Trans.
Aerosp. Electron. Syst., submitted for publication.

[11] Y. H. Shi and R. Eberhart, “Empirical study of particle swarm optimiza-
tion,” in Proc. IEEE Congr. on Evolutionary Computation(CEC’99).

[12] A. Goldsmith, Wireless Communications, Cambridge University Press,
Cambridge, U.K, 2005.

[13] T. Samad, J. S. Bay, and D. Godbole, “Network-centric systems for
military operations in urban terrain: The role of uavs,”Proceedings of
the IEEE, vol. 95, pp. 92–107, Jan. 2007.

[14] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An
application-specific protocol architecture for wireless microsensor net-
works,” IEEE Trans. Wireless Commun., vol. 1, pp. 660–670, Oct. 2002.


