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Abstract—In emitter geo-location estimation systems, it is well
known that the geometry between sensors and the emitter can
seriously impact the accuracy of the location estimate. Her we
consider a case where a set of sensors is tasked to perform
a sequence of location estimates on an emitter as the sensors
progress throughout their trajectories. The goal is to selet the
trajectories so as to optimally improve the location estimge at 200
each step in the sequence. To build the optimal trajectorieshe
aircraft, at their current locations, need to know their optimal
next states at the time of next estimation, under the constiat of
a reachable set due to limited reachable velocity or thrustln this
paper, we propose a one-step method to tackle the optimal nex
state(ONS) problem using the Particle Swarm OptimizationPSO)
by solving the optimal amount of applied thrust along the flyng 270
trajectories. Simulation results show that the proposed mihod 100
dramatically improves the estimation accuracy along the fling 50
trajectories, compared to the random walk and constant veloity
scheme. We also show that the estimation accuracy performaa 0
is also insensitive to the problem dimensionality.
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I. INTRODUCTION

Emitter location estimation has been proved to be a W|de'L¥ N
applicable technique in many fields. Specifically, we coeIS|dp,0b|em
the scenario that a group of airborne sensors try to pagsivel
estimate the location of a non-cooperative RF emitter on a
battlefield. In recent interest, those sensors are placed iorff2]. To build the optimal trajectories, each aircraft,their
small and slow movindgJnmanned Aerial VehicleQUAVs). current states, needs to know its reachable set of nexsstate
At each time instance, the UAVs fly at certain velocitiesomputes the optimal next states within the reachable set,
within the reachable velocity range. We consider that thend then solves a state/control-constrained problem & dte
sensors employ Time Difference of Arrival (TDOA) ando the optimal next state in a time coordinated manner.
Frequency Difference of Arrival (FDOA) to estimate the
geo-location of the emitter, in which case, UAVs must be To illustrate the challenging nature in determining the
paired to estimate those values. For simplicity, we will naiptimal next state, among other steps, consider 4 sensors
explore the effect of optimal sensor selection and pairitig [ paired into two distinct pairs and consider the optimizatid
rather we simply consider that the UAVs are paired arbiirari the X and Y velocities of just one sensor of these 4 sensors.

As discussed later we use the trace of the CRLB matrix of

In emitter geo-location estimation systems, it is welhe geo-location estimate as our objective function, whsch
known that the geometry between sensors and the emitbown in Fig. 1 for this case. A similar lack of convexity
can seriously impact the accuracy of the location estimatmlculated entropy as an objective function forced [2] to
Here we consider a case where a set of sensors is taskedeswort to exhaustive search for the best next velocity only o
perform a sequence of location estimates on an emitter apredefined grid to make the problem manageable in real time.
the sensors progress throughout their trajectories. Tteé go
is to select the trajectories so as to optimally improve thelt has been demonstrated in many cases, those kind of
location estimate at each step in the sequence. The positignimization problems are hard to solve using classical
and velocity of the sensor at the scheduled time of the neadarivative-based  optimization  approaches.  Moreover,
estimation task is called the sensor’s “next state”, as ddfinderivative-based approaches in multimodal problems are

The Multimodal Characteristics of the Emitter LaoatEstimation



very likely to converge to local minima in which case, thé\. Dynamic Model

problem would end up with supoptimgl solutions. S_ome. of Here we propose a dynamic model in which the sensor
those problems are even not differentiable at certain PoINbosition and velocity update rule is defined. At state 1,
which greatly restricts the usefulness of derivative-basg,e position Vectops 1 = pt + vei1 - At, where At is the
approaches in multi-dimensional and multimodal problemgme interval between two adjacent states. From the Newton’
An obvious optimal scheme is brute force, also known as tRgcond and Third Law, thrust applied on an aircraft at each
grid search approach, but it requires a prohibitive amougiate changes the velocity of the aircraft, and the dynamics
of computations, especially in multi-dimensional prob#m .q,1d be described a® 1 = Vi + L - ugyq - At, Wherem

. - . - . . m )
which is generally infeasible to apply in real time angs the mass of the aircraft. Written in the matrix form, thatet

resource constrained applications. dynamic model is,
A common resort for multi-dimensional and multimodal < Pt+1 > _ A( Pt )+Bu Q)
. . . .. t+1
optimization problems is the metaheuristic approachas, e. Vi1 Vi
Genetic Algorithm(GA), Ant Colony Optimization(ACO),
and Particle Swarm OptimizatiorfPSO) etc. Particle swarmwhere A andB are
optimization (PSO) was originally proposed by Kennedy 1 0 At 0 0 0
and Eberhart in 1995 [3]. It is widely adopted and focused 01 0 At 0 0
by researchers due to its simple implementation and fast A= | o o 1 o [ B=| 1 @
convergence. The original intent was to graphically siraula 00 0 1 ’6 %

the graceful but unpredictable choreography of a bird flock.

Previous research [4] indicates that PSO is relatively mog@d ||w|| < mae, [|v]] < Vmae-
capable for global exploration and converges faster thast mo o
major metaheuristic algorithms. B. TDOA/FDOA Estimation

We employ the idea of using TDOA and FDOA to estimate
We test the algorithm to demonstrate the accuradfe emitter location [5], in which case sensors are beingeai
improvement of the algorithm. Results show that th&® get TDOA and FDOA measurements. How sensors are
proposed PSO-ONS (Optimal Next State) algorithm improv@gired in order to maximize the accuracy of the estimation is
the accuracy of the estimation along the platform flyingeyond the scope of this paper. Interested readers cowdd ref

trajectories dramatically. We also show the proposed niethi® [1]. We assume that sensors are paired arbitrarily. Befor
is relatively insensitive to the problem dimensionalityiefh using TDOA and FDOA measurements to estimate the emitter

indicates the robustness of the algorithm. location, we must first estimate TDOA and FDOA themselves
from the noisy signal data. Assume tfth and thejth sensor

The rest of the paper is structured as follows. The locatighe Paired, then the noise free TDGA) and FDOA(;;)
estimation problem is described in Section 2, and the pdggasurements can be deterministically computed as fallows

algorithm is briefly introduced in Section 3. Section 4 prase

the simulation scenarios and shows the experimental gesult 1 _ D) _ 3
; L, . . . . Tij = — [\/(xl - Ie) + (yz - ye)
Computational complexity issue is discussed in Section 5. c
Section 6 concludes the paper with comments on future work. —\/(xj — )2+ (yj — ye)?] (3)
Il. PROBLEM SETUP L [(:vi — Te)Vsi + (Yi — Ye)Vyi
Yoo bV =) = g — )
Without loss of generality, we assume there are totally _(a:j — Te)Upj + (Y5 —ye)vw} @)
N, sensors (and assume each UAV is equipped with a V@ — 2?2 — (y) — ye)?

single sensor, so we can use the term sensor and aircraft
interchangeably), and consider a 2-D Cartesian plane whefgerec is the speed of light.
the true emitter is located at the position.,y.}. The

P = {P1,P2, PN, } andv = {vy,va, - VN, ] represent  |n the presence of noise, the TDOA and FDOA mea-
the sensor positions and velocities, whese = {z:,5:} surements will be perturbed by error, i.e., for thth pair,
and vy = {vzt, vy }. Sensors intercept the signal and makg ¢ {1,2,---,Ns/2},
TDOA and FDOA measurements at certain instants. At each
time interval, a certain amount of thrust is applied on each
sensor which is denoted ag = {wu., u,;}. = Tpt+ADR (5)

Wp wp + Awp, (6)



wheren is the iteration timeH = [HT, -, H{_ ], and

Define the estimatd = {#,&} which can be obtained S—fﬁi gzi
using the Maximum Likelihood(ML) estimator [6]. Due to H,, — : :
the Asymptotic propertpf the Maximum Likelihood estimator 69;/2 aeNI“/z
[7], as more data observations are collected, the distobutf oz, Oy.

the estimate becomes Gaussian, #g,,= {A%,, Ao} ~ _ _ _
N(0,FI;}'). FI,, is the Fisher Information Matri¢IM) of IS the Jacobian matrix of thenth pair of sensors, and’

the estimatedy, = {A%n, Adn, 7 of the mth pair, defined denotes the transposAf(X,) = H[x — Xn| + v is the pre-
as, diction error due to the Taylor series approximation when

applying Gauss-Newton method. And tBeamer-Rao Lower
Boundof this problem can be represented as,

FI,, — 2Re | Lnl¥m) o1 95mOm) 7
90, 0, var{x} > (H'J,H)"? (10)

whereC,,, is the covariance matrix of the AWGN among two
Sensors in thenth pair, s, denotes the received signal, and We could draw an ellipsoid of the CRLB matrix, the area
0,, is the actual TDOA and FDOA measurements. However, . . ) .

. . . . f which corresponds to the covariance of the estimation.
the result given in (8) requires knowledge of the sign

and analytical results for the derivatives, [8] has showat th ur goal is to find the optimal next state for each sensor

. ; btased on the current received signal, the current geoidocat
(8) can be computed numerically using the data measuremen % . . .
estimate and sensor nav data, i.e. the estimation accutacy a

those optimal next states is maximized, but subject to the

We define the Fisher information matrix for the est'm"’uc{;ehicle velocity and thrust constraint. To achieve thislgoa

(01,01, Os/2] @s Tollows, technically the CRLB of the emitter location estimator sllou
be minimized. Therefore, the optimization problem could be
FI, L2 o Linsy2 stated as,
I FI. - Ians2
Jyg = : . . : (8) .
Ins/21 Insj22 -+ Flng)2 argmin det [(Z HiTJ"Hi)_l} (11)
=1
wherel;;, i # j € {1,2,---,Ns/2} is the cross term FIM st [[uil] < umaz

betweenith and jth pair. Note that we assume the sensors
are paired arbitrarily and no sharing among pairs, hence the

Lj, i#j€{1,2,---,Ns/2} equal zero. In (11), we use the determinant of the CRLB matrix as
the evaluation criterion for estimation accuracy. Howgver
C. Emitter Geo-Location Estimation [10] has shown that using the determinant as a single-value

After TDOA and FDOA ) d by the Maxi criterion has several drawbacks which may limit it to be a
ter an are estimated by the aX'rm”nsuboptimal solution in some case. The authors have also

Likelihood estimator, those TDOA and FDOA estimates A& own that the trace of the CRLB matrix is a good alternative

further used to estimate the emitter geo-location. From t?g the determinant, and at the same time, mitigates major
asﬁ/ mr;]totl_;_:Dag:/uFrgran Of_ the TDOA(‘;/ FDO’_A‘ MLEd' (\j/ve_ CaYrawbacks of the determinant operator. Here, we accept the
take the estimates as Gaussian and derive g, 4nq yse the trace instead of the determinant as the

MLE for the .emltter g'eo-locatlon, Whlch is a Weighted LeaS%jngle-value evaluation of the estimation accuracy.
Squares estimator. It's clear that in (3) and (4), TDOA an
FDOA measurements are nonlinear in the emitter IocatlonACCording to the dynamic model defined earlier, sensor

parameters|f., y|) we wish to estimate_, therefore there i%(c)sitions can be calculated usipg. 1 — pt + veiq - At, SO
n(_)hcl((s)sed fﬁrm solutlor;l [g].' TheI_N((j)nImea_r Leastr;Squa_r tually we only need to optimize over sensor velocitiescivhi
with Gauss-Newton method is applied to estimate the em'tt&"’nly depend on the initial velocities and thrusts applied in

location. each state. In the 2-D case for example, if we hake= 10

Using the iterative Nonlinear Least-Squares algorithre, thiengors the number of variables to be optimized over is
estimate in each iteration is represented as below [9] [7]. g 9 — 20, which is fairly large. Moreover, it's also clear

that (11) is not a convex optimization problem. Performing
Kni1 = %o + (HTIH) THT I Af (%) (9) classical optimization approaches even on resourcegelimi

UAVs is computationally expensive. In the next section, we

briefly discuss a metaheurisic method called tharticle



Swarm Optimizationo cope with this multivariate multimodal constants, called thacceleration factorgenerally set to 2.0
optimization problem. [11]; rand; () andrands(-) are random numbers distributed
uniformly over the rang€0,1]; and pg, p; are the best
solutions discovered so far by the group and itieparticle,
I1l. PARTICLE SWARM OPTIMIZATION respectively.

Particle Swarm Optimization (PSO) is a population-based

evolutionary algorithm which is generally inspired by Inthet+1 step of iteration, particle usesp, andp; as the
biological evolution behavior. Similar to GA, PSO is alsteuristic information to update its own velocity and pasiti

an evolutionary algorithm based on swarm intelligence., Buthe first term in (12) could be viewed as the diversification
unlike GA, PSO has no explicit evolution operator such asrm, while the second and third are the intensifications,
crossover and mutation, instead of simple operators immotud which could also be seen as the trustworthiness toward$ itse
additions and multiplications in its iteration equationsand the entire social system, respectively. Thereforeumro

which simplifies the algorithm and makes the algorithm lesfiversification and individual intensification are caréful
computational intensive. balanced.

In PSO, the potential solutions, called patrticles, fly thylou
the solution space by following the current optimal paetcl IV. SIMULATION RESULTS
Particles in the entire swarm are initialized randomly ie th
entire D-dimensional solution space. During a run, patici To show how PSO-ONS algorithm improves the system’s
update their velocities and positions according to the beggtimation accuracy along the optimal trajectories, welyapp
solutions found so far by themselves and the entire groiffe algorithm in each intermediate state to find the optimal
jointly. Since the algorithm was first reported in 1995 [3]next state. In order to give quantitative result of estiorati
hundreds of PSO variants have been proposed in the litefat@ccuracy improvement, emitter location estimation proced
and have been successfully examined in real world applida-performed in each of those optimal intermediate states.
tions. Comparison results have shown that most PSO variah@ comparison purposes we also show results for two other
present similar results in the early part of their conveogsn schemes: random walk and constant velocity. In the random
In real time applications like the optimal next state, reagh walk scheme the next optimal state is chosen randomly within
a reasonable solution while occupying limited amount dhe reachable set and in the constant velocity scheme the
time and computational power should be given the highedgnsors continue to each next state along a constant yelocit
priority. Neither large number of fitness function evaloat path. The random walk attempts to achieve geometric
nor additional complex operation is feasible. Therefohe tdiversity through random selections; the constant vefocit
PSO algorithm with inertia weight [11] is employed in theapproach mimics the naive idea of simply letting the sensors
present paper, which can be represented mathematicallycastinue to fly as they were originally.
follows,

In our experiments, we consider 6 sensors distributed
randomly over the space and are paired arbitrarily intoethre
via(t +1) = w(t) x vig(t) + e1 x randa () disjoint pairs. Trajectories of which are optimized ovelr @l

X (pid — Tiq) + c2 X randsy(-) sensors in the PSO-ONS scenario. We assume the received
X (Pgd — Tid) (12) signal-to-noise ratio varies as in free-space propagation
scenario [12]; the emitter signal frequency is 10GHz; ttalto
number of intermediate states for each aircraft is 20; time
between each intermediate stateA$ = 5s; and platform
Tia(t +1) = @ia(t) + via(t + 1) (13)  velocity is bounded|v| < 100m/s and the applied thrust
[u]| < 1000 Newton, which is a reasonable assumption for
UAVs [13]. The size of the particle swarm is 5, and we do
20 iterations in each PSO procedure. Emitter true location
is [40000/+/2,40000/+/2]. Experimental result is shown in
where N is the number of particles,D denotes Fig.2.

1<i<N,1<d<D

the dimensionality; V; = (vi1, Vi2,** ,ViD),
Vid € [—Umaz, Umaz] 1S the velocity vector of the particle Fig.2 demonstrates the comparison of estimation error
Similarly, X; = (zi1,%2, * ,ZiD), Tid € [—Tmaz, Tmaz| Dbetween the PSO-ONS, the random walk and the constant

is the position vector of the particle which is a potential velocity schemes. Same set of sensor states are initialized
solution in the solution space. The quality of the solutiofor all three cases, and therefore they have the same
is measured by the value of a fitness function (commoniyitial accuracy. We can see that the estimation accuracy is
the objective function)w(t) is theinertia weightdecreasing decreasing steadily along the flying trajectory while thieeot
linearly from 0.9 to 0.2 during a run;c;,co are positive two suffer performance fluctuation due to the multimodal
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. Lox10 correspondingly. However, the success rate doesn’t change
2 . drastically. WhenNs = 18, the dimensions of the problem
R ; _ PR it i
1 is 18 x 2 = 36 which is prohibitive for the grid search scheme
4000 0s @(\\3\ or even classical optimization methods.
3000 o N Te—o
’ a{\j/a V. COMPUTATIONAL COMPLEXITY ANALYSIS
\‘ Simulation results above have provided strong evidence
° - 2 NG that the proposed PSO-ONS algorithm achieves accurate
T%boo o o om0 35 1 0s o 05 1 R estimation. It could be also demonstrated that the proposed
' method is computationally efficient, compared to some
Fig. 3. Optimal and Random Thrust on Vector Field straightforward brute force approaches, such as the grid

search scheme. Consider a scenario where 4 aircrafts are
deployed to perform the emitter location estimation. Weehav
characteristics of the problem. already shown this optimization problem is 8 dimensionad] a
further consider the vehicle thrust constraint-igd00 ~ 100
A sequence of the PSO-ONS optimized thrust appligdewton, and the step length in the grid search is 5m/s, the
on a single platform is plotted in 2-D vector field, while anumber of grid point of a single next optimal next state
sequence of random thrust is also shown in Fig.3. As rand@wmputation would b&0® = 6.5 x 10'2 which is prohibitively
thrusts drive the platform to move unintentionally over thauge and not feasible to compute on a resource-constrained
whole space, the platform moves towards a clear directipgal-time system. Even with a relatively coarse grid with
along which more accurate estimation can be achieveglep lengti20m/s, the number of grid point would still bie)®.
Moreover, a wiggling behavior of the platform is clearly
seen along the optimal trajectory which allows the platform On the contrary, the random walk and the constant velocity
to collect data which contains more differences in timeschemes are the least computational expensive approaches.
of-arrival and frequency-of-arrival. This kind of movemenMoreover, for the constant velocity case, no thrust needs
is desirable and beneficial to the location estimation iregain to be applied therefore it is the most energy efficient. If
the measurement of computational cost is the number of
Another advantage of the proposed PSO-ONS algorithemaluations of the trace of CRLB matrix, it only requires a
is that the performance of PSO-ONS is insensitive to theingle function evaluation in each next state. However, in
increasing problem dimensionality which shows the algonit terms of estimation accuracy, the random walk and constant
is stable and expandable. We define the success rate asvifecity schemes, as shown in Fig.2 suffer great fluctuation
number of times PSO-ONS gets better estimation accuraayd in general are less accurate than the proposed method.
than the random walk over the total number of simulation
runs. As we can see from Fig.4, as the number of sensord’he newly proposed PSO-ONS algorithm, while achieving
increases, the dimension of the optimization problem improved estimation accuracy, is also efficient in compaiest



and simple in structure, which make the proposed algorithnr]
applicable for real-world emitter location estimation Ipiems.

: . icfl
In this paper, where we have 5 particles, each of whic
iterates 20 times, the total number of computations within
each optimal next state calculation is 100, which is dra#ific [©]
smaller than the grid search. [10]

VI. DIScUSSION ANDFUTURE WORK

11
This paper proposed a computationally efficient way t[o :
determine optimal next states for UAVs to perform accurat¥?!
emitter geo-location estimation. Due to the multi-dimensil |13
and multimodal nature of the optimal next state problem, we
incorporated a widely-researched metaheuristic meththeldca 14]
the Particle Swarm Optimization (PSO) to attack the proble|In
Simulation results demonstrate PSO is a promising approach
in terms of high estimation accuracy and low computational
cost.

An issue worthwhile discussing is the communication cost.
The PSO optimization procedure doesn’t really introduce
much extra communication cost. The only information needed
to be shared among sensors is their position and velocities,
none of the actual data they collected needed to be tramshitt
over the wireless channel. However the sensor network may
perform other estimation or tracking applications at theesa
time, which may also need that information as well. An
example is to perform the optimal sensor selection andngsiri
[1]. In such cases, only the optimized sensor positions and
velocities need to be sent back to sensors, which means even
less communication overhead. Note that the PSO optimizatio
we employ is a centralized algorithm which needs a “central
node” to perform the optimization. This central node might
be a powered node far away from the sensors. A more
realistic situation is that the central node is selected ramo
the sensors themselves. For robustness considerations, a
dynamic selection scheme, based on the remaining energy of
the sensors [14], might be applicable.
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