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Abstract 
Data compression methods commonly focus on 

mean-square error (MSE) distortion.  However, in 
TDOA/FDOA emitter location the distortion measure 
should focus on parameter accuracy.  This paper dis-
cusses the proper choice of a distortion measure for this 
problem.  We show that MSE is a poor choice for two 
reasons: (i) increased MSE may not even effect the pa-
rameter accuracy, and (ii) there are other factors that 
must be considered (e.g., the signal’s RMS band-
width/duration and the relative usefulness of TDOA vs. 
FDOA).  We propose a new measure that captures the 
true impact of compression and illustrate its importance 
through a few simple examples.   

 
1: Introduction 

 
An effective way to locate electromagnetic emitters is 

to measure the time-difference-of-arrival (TDOA) and the 
frequency-difference-of-arrival (FDOA) between pairs of 
signals received at geographically separated sites [1]-[3].  
The measurement of TDOA/FDOA between these signals 
is done by coherently cross-correlating the signal pairs 
[2], [3], and  requires that the signal samples of the two 
signals are available at a common site, which is generally 
accomplished by transferring the signal samples over a 
data link from one site to the other site.  An important 
aspect of this that is not widely addressed in the literature 
is that often the available data link rate is insufficient to 
accomplish the transfer within the time requirement 
unless some form of lossy data compression is employed.  
Furthermore, most of the existing methods for compres-
sion for emitter location have focused on using mean-
square error (MSE) between the original signal and the 
decompressed signal as the measure of the distortion in-
troduced by the compression method.  This paper shows 
that MSE is a poor choice for two reasons: (i) increased 
MSE may not even effect the parameter accuracy, and (ii) 
there are other factors that must be considered (e.g., the 

signal’s RMS bandwidth/duration and the relative useful-
ness of TDOA vs. FDOA).  A new measure is proposed 
that captures the true impact of compression and its im-
portance is illustrated through a few simple examples. 

The two noisy signals received are complex-valued 
baseband signals given by 
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where s(k) and d(k) are the complex baseband signals of 
interest and n(k) and v(k) are complex white Gaussian 
noises, each with real and imaginary parts notated as indi-
cated. The signal d(k) is a delayed and doppler shifted 
version of s(k).  The signal-to-noise ratios (SNR) for 
these two signals are denoted SNR and DNR, respectively 
(where SNR (non-italic) represents an acronym for sig-
nal-to-noise ratio; SNR (italic) represents the SNR for 

, etc.).  To cross correlate these two signals one of 
them (assumed to be  here) is compressed, trans-
ferred to the other site, and then decompressed before 
cross-correlation as shown in Figure 1.  After lossy com-
pression and decompression signal ŝc has SNR of 

, and the output SNR after cross-correlation is given 
by 
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where WT is the time-bandwidth product (or coherent 
processing gain), with W being the noise bandwidth of the 
receiver and T being the duration of the received signal 
[3]; here SNReff  is defined to be the so-called effective 
SNR that gets boosted by the coherent processing gain. 

 



 

The accuracies of the TDOA/FDOA estimates are 
bounded by the Cramer-Rao bounds according to 
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where  is the signal’s RMS (or Gabor) bandwidth in 
Hz,    is the signal’s RMS (or Gabor) duration in 
seconds [3]; we will refer collectively to these two signal 
parameters as the signal’s “RMS widths”.  The RMS 
bandwidth is given by 
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with being the Fourier transform of the continuous-
time signal  and the RMS duration in seconds is given 
by 
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Figure 1: Configuration for processing. 
 
Several results focusing on use of MSE distortion have 

been published [4]-[7].  For the case of white Gaussian 
signals and noises, Matthiesen and Miller [4] established 
bounds on the rate-distortion performance for the TDOA 
problem and compared them to the performance achiev-
able using scalar quantizers, where distortion is measured 
in terms of lost SNR due to the mean square error (MSE) 
of lossy compression. Note that these results are not ap-
plicable when locating radar and communication emitters 
because the signals encountered are not Gaussian. A 
MSE-based method using block adaptive scalar quantiza-
tion was proposed by Desjardins [5] and analyzed by 
Fowler [6] to determine its MSE for various signal types.  
Wavelet-based methods designed to minimize MSE for a 
given rate have been proposed [7] and demonstrated [8] 
to outperform the MSE-based quantization approaches 
given in [4]-[6]. 

More recently, though, a new viewpoint has been ex-
plored by Fowler [9]-[11] that abandons the sole use of 
MSE as a distortion measure and strives to exploit the fact 
that the location accuracy depends on other signal factors 
that can be exploited during compression.  In particular, it 
is recognized that the location accuracy is impacted by the 
signal’s RMS widths in such a way that a compression 
method may be able to throw away time-frequency com-
ponents that have minimal impact on the RMS widths and 
in so doing realize a significant improvement in compres-
sion ratio without significantly reducing the location ac-
curacy.  In [9] the idea of using a combination of decima-
tion and quantization was explored: a lowpass filter re-
duces the signal’s bandwidth, enabling data compression 
through decimation, and then the signal is quantized.  The 
results in [9] determine the optimal balance between 
quantization and decimation to achieve the best location 
accuracy – the distortion measure used is the TDOA ac-
curacy, which is impacted by the RMS bandwidth after 
filtering and the MSE after quantization.  It was shown 
that this approach outperforms the quantization-only and 
the decimation-only approaches.  In [10] and [11], the 
wavelet transform was used to identify components that 
contribute insignificantly to the RMS bandwidth and 
therefore can be discarded by a compression algorithm to 
gain a significant improvement in compression ratio com-
pared to MSE-based wavelet methods.  A particularly 
striking insight from these papers is that although the de-
compressed signal obtained from these RMS-based wave-
let methods bears very little resemblance to the original 
signal (i.e., has large MSE), the resulting TDOA accuracy 
remains remarkably good for such a large MSE. 

The results in [9]-[11] all focused on developing algo-
rithms to exploit the non-MSE distortions that arise from 
looking at the impact of compression on the TDOA accu-
racy  through reduction of its RMS bandwidth and its 
SNR; the impact of RMS duration on FDOA was not con-
sidered in detail.  The focus of this paper is not to develop 
an algorithm but to further explore the characteristics and 
ramifications of using a non-MSE distortion measure: to 
demonstrate why the MSE-only distortion measure is 
poorly suited to emitter location, to  consider how to 
weight the considerations of RMS duration and RMS 
bandwidth and their impacts on TDOA/FDOA accuracy, 
and to demonstrate the importance of these considerations 
via some simple examples.  Section II shows why the 
MSE distortion measure is ineffective and then develops a 
suitable non-MSE distortion measure, Section III 
discusses some ramifications nd issues surrounding the 
use of these new distortion measures, and Section IV dis-
cusses the issue of weighting the effects on TDOA and 
FDOA accuracies using a simple example.  

 



 

2: Non-MSE Distortion Measure  
The goodness of a compression scheme is assessed via 

a rate-distortion analysis – that is, establish a curve that 
defines the level of distortion as a function of rate.  The 
most common definition of distortion is the mean-square 
error (MSE) between the signal  (see Figure 1) and 
the de-compressed version of it, s .  The goal then is 
to minimize the MSE (or equivalently maximize the SNR
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(see Figure 1)) for a given desired rate.  This is also 
equivalent to maximizing the signal-to-quantization ratio 
(SQR) of the compression scheme, where SQR = Ps/Pnc 
where Pnc is the power of the noise added due to lossy 
compression.  From this we can write 
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and then the output SNR becomes 
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from which we can see that as long as SQR > 
min{SNR,DNR}, the value of SNRo is essentially unaf-
fected by SQR.   

Thus, for a compression scheme that relies solely on di-
rect quantization of signal samples (e.g., [5], [6]) the im-
pact of quantization on the TDOA/FDOA accuracy will 
be invisible until the quantizer is made so coarse that it’s 
SQR drops below a threshold set by SNR and DNR.  
Thus, even in this simple case MSE is not necessarily the 
best distortion measure to use. 

The effect of direct quantization on the TDOA/FDOA 
accuracy in (3) is solely through its impact on the SNR 
because quantization cannot effect the signal’s RMS 
widths.  However, when the quantization is used as part 
of some form of transform coding then the quantization 
could impact the RMS widths.  For example, if the trans-
form used is a frequency-domain transform (like the 
DFT) and certain transform coefficients are set to zero as 
part of the compression scheme, then this could result in 
the decompressed signal having a different RMS band-
width.  Similarly, if the transform used is a joint time-
frequency transform (like the wavelet transform) and cer-
tain transform coefficients are set to zero as part of the 
compression scheme, then this could result in the decom-
pressed signal having a different RMS duration and RMS 
bandwidth.  Thus, using a pure MSE distortion measure 
fails to capture the impact of the compression scheme on 
the TDOA/FDOA accuracy.  Thus, a scheme like the 
wavelet-based method in [7] and [8] that quantizes the 
wavelet coefficients to achieve a minimum MSE for a 

given rate fails to fully exploit the signal structure to gain 
optimal compression performance.  Namely, it ignores the 
fact that some of its coefficients may have little useful-
ness toward estimating TDOA/FDOA parameters.   

Thus, what is needed is a new distortion measure that 
captures the total effect of a compression scheme on 
TDOA/FDOA accuracy.  The above considerations imply 
that we should use the TDOA/FDOA accuracies them-
selves as our distortion measure.  We ignore for now the 
fact that this gives two distortion measures rather than the 
required single measure.  Because cross-correlation meth-
ods can achieve the Cramer-Rao bounds [2],[3] we use 
the right-hand sides of (3) as our distortion measures.  
Looking at the expressions for TDOA/FDOA accuracies 
in (3) it is clear that we should take as measures to maxi-
mize for a given desired rate the following weighted 
“RMS-distortion” SNRs: 
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So the general goal is the following, expressed as trans-
form coding with a non-MSE distortion.  Given some 
signal decomposition  
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of the signal to be compressed, we wish to select which 
coefficients should be coded and transmitted to achieve a 
desired rate-distortion goal where distortion is measured 
using (8) and (9).  For example, we may wish to find a 
subset Ω of indices such that the signal given by  
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maximizes (8) and (9) while the set { can be 
coded using rate R.  In general this selection process is 
quite difficult because of (i) the nonlinear, nonmonotonic 
relationship between the coefficients and the RMS 
widths, and (ii) the fact that removing a coefficient from 
Ω effects both the RMS widths and SNR

}| Ω∈ncn

o.  Furthermore, 
the simultaneous maximization of  (8) and (9) can be dif-
ficult, especially given that there may be a different ac-

 



 

ceptable level of degradation on TDOA than there is on 
FDOA; this issue is considered later.  A suboptimal ap-
proach based on these ideas and using the wavelet trans-
form was presented in [11] where it was shown that the 
above non-MSE TDOA distortion measure motivates the 
use of a quadratic weighting along the frequency axis of 
the wavelet coefficients to emphasize the importance of 
high frequencies to estimating TDOA.  

3: Ramifications of Non-MSE Distortion 
Simpler versions of these non-MSE distortion measures  

were first used in [9] to find the optimal balance between 
quantization and decimation for the simple case of a rec-
tangular  spectrum – the signal was first lowpass filtered 
and decimated to reduce the rate and then quantized to 
reduce the rate further.  The rectangular spectrum simpli-
fied the scenario so that filtering had no effect on SNR.  
Here we consider arbitrary spectra and include the effect 
on SNR.  Figure 2a shows that for non-rectangular spectra 
(as is expected in practice) the drop off in effective SNR 
(SNRrms,TDOA) due to only filtering/decimation is not as 
damaging as it is for the rectangular case– in fact, for the 
Gaussian-shaped spectrum the lowpass filtering actually 
improves the effective SNR because it improves the SNR 
faster than it degrades the rms bandwidth (up to a point).  
This result was computed using (8) for the case of an 
ideal lowpass filter and assuming that any rational deci-
mation rate is achievable. If the signal’s highest fre-
quency is B Hz, it is filtered to αB so the rate reduction 
factor is α. 

  

 
Figure 2: Effective SNR vs. Rate Reduction Factor for 
SNR = 20 dB. 
 

Of course, it is possible to use filter types other than 
lowpass in this application.  If we apply a highpass filter 
having cutoff of (1– α)B Hz, then the bandwidth of the 
resulting bandpass signal is αB Hz and the rate can be 
reduced by the rate reduction factor is then α (assuming 
that the signal can be properly bandpass sampled at any 
value α, which won’t always be exactly true but will give 
an insightful result nonetheless).  Figure 2b shows the re-
sults for this case for the three spectra considered above; 
note that here it is the rectangular spectrum that yields the 
improvement as the rate is reduced.  

The importance of these results is that they point the 
way to develop algorithms that exploit the RMS width 
idea to create very effective compression schemes; in 
particular, that the impact of compression can in some 
cases actually improve the accuracy by carefully balanc-
ing the RMS bandwidth and SNR considerations.  To 
ensure effective compression the scheme must be tailored 
to the spectral shape of the signal in a way to balance the 
effects of noise and RMS widths. 

4: TDOA Accuracy vs. FDOA Accuracy 
In Section III we have explicitly considered only 

TDOA accuracy, or equivalently SNRrms,TDOA. In a general 
approach we wish to select time-frequency cells in a way 
that would give high compression but would have mini-
mal joint impact on SNRrms,TDOA and SNRrms,FDOA.  But the 

 



 

question then is: what is the right way to combine these 
two distortion measures into an appropriate single distor-
tion measure?  The answer to this question is not at all 
straight-forward, but has the potential for significant im-
provements in compression ratios.  The answer depends 
highly on the geometry of the location scenario – thus, if 
there is some a priori information available about a rough 
location for the emitter then it can be used to decide how 
to allocate bits to accordingly.  A simple example of this 
is given.  The scenario is shown in Figure 3 here there are 
four platforms (two pairs) participating to locate the emit-
ter – each pair generates a TDOA/FDOA estimate, which 
are then fused to find the emitter’s location.  In this sim-
ple 2-D scenario, of course, it is possible to locate the 
emitter with the TDOA/FDOA estimates from either pair 
and the location standard deviations can be shown to be   
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for the first pair of platforms and  
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for the second pair of platforms.  However, in more real-
istic scenarios all the platforms would be used to locate 
the emitter.  Thus, we consider here how these two sets of 
location accuracies combine to determine the location 
accuracy when all four platforms are used. 
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Figure 3: Location Scenario 

 

For the case of λ = 0.3 m, B = 10 km, R = 70 km, and 
V = 200 m/s we get σx;1,2 = 6.3 m, σy;1,2 = 740.6 m, σx;3,4 = 
740.6 m, and σy;3,4 = 6.3 m.  Thus, when using all four 
platforms together, in this case the FDOA accuracy con-
tributes nothing to the overall location accuracy; there-
fore, we would be better off compressing to ensure negli-
gible degradation in TDOA accuracy, at the expense of 
non-negligible degradation in FDOA accuracy.  Thus, 
according to our newly developed distortion measures, 
we would want to maintain RMS bandwidth but could 
afford to reduce the RMS duration significantly.  This 
would lead to significantly higher compression ratios than 
could be accomplished if a pure MSE distortion measure 
were used.   

5: Conclusions 
It is clear that a MSE-only distortion measure is inade-

quate because it does not properly capture the impact of 
the compression on the TDOA/FDOA accuracies, espe-
cially when the compression is accomplished via time-
frequency transform coding.  On the other hand, the non-
MSE distortion measures introduced here do capture the 
effect on TDOA/FDOA accuracy because they were de-
rived from considering the relationship between time-
frequency RMS widths and the accuracies.  As demon-
strated here, it is possible to exploit this idea to get im-
proved compression performance.  However, as is clear 
from the considerations in Section IV, it is not straight-
forward how one should combine the two distortion 
measures developed, SNRrms,TDOA and SNRrms,FDOA into a 
single measure that would enable the proper balancing of 
allocation of rate resources between the two measures.  
This difficulty lies in the fact that to determine the proper 
allocation depends on knowledge of the geometry be-
tween the emitter and the receivers. 
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