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ABSTRACT 
Locating emitters by cross-correlating received signals to 

compute their time-difference-of-arrival (TDOA) and the fre-
quency-difference-of-arrival (FDOA) requires that signal data 
received at one platform be transferred to the other platform.  
Often the data link used has insufficient bandwidth to accom-
plish the transfer within the time requirement, and therefore use 
of data compression is needed.  This paper outlines a useful 
progression in compression techniques from those that consider 
only mean square error to those that consider the true impact 
on the estimated TDOA/FDOA accuracy.  Within this context, 
specific results are presented for two compression approaches 
for TDOA/FDOA systems.  The first is the application of 
block-adaptive quantizers (BAQ) to the real and imaginary 
parts of the complex baseband signal to be transferred. The 
second uses a wavelet transform together with an adaptively 
allocated set of quantizers; also, certain wavelet coefficients can 
be eliminated with lower impact on the TDOA/FDOA accuracy 
than expected from a mean-square quantization point of view.   

 

1.  INTRODUCTION 

An effective way to locate electromagnetic emitters is to 
measure the time-difference-of-arrival (TDOA) and the fre-
quency-difference-of-arrival (FDOA) between pairs of signals 
received at geographically separated sites [1]-[3].  The meas-
urement of TDOA/FDOA between these signals is done by 
coherently cross-correlating the signal pairs [2], [3], and  re-
quires that the signal samples of the two signals are available at 
a common site, which is generally accomplished by transferring 
the signal samples over a data link from one site to the other 
site.  An important aspect of this that is not widely addressed 
in the literature is that often the available data link rate is insuf-
ficient to accomplish the transfer within the time requirement 
unless some form of lossy data compression is employed.  For 
the case of Gaussian signals and noises, the results in [4] estab-
lish bounds on the rate-distortion performance for the 
TDOA/FDOA problem and compare them to the performance 
achievable using scalar quantizers, where distortion is measured 
in terms of lost SNR due to compression. However, these re-
sults are not applicable when locating radar and communication 
emitters because the signals encountered are not Gaussian.   

The two noisy signals received are complex-valued base-
band signals given by 
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where s(k) and d(k) are the complex baseband signals of interest 
and n(k) and v(k) are complex white Gaussian noises, each with 
real and imaginary parts notated as indicated. The signal d(k) is 
a delayed and doppler shifted version of s(k).  The signal-to-
noise ratios (SNR) for these two signals are denoted SNR and 
DNR, respectively1.  To cross correlate these two signals one of 
them (assumed to be )(ˆ ks  here) is compressed, transferred to 

the other site, and then decompressed before cross-correlation.  
After lossy compression, signal )(ˆ ks  has SNR of qSNR , and 

the SNR after cross-correlation is given by 
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where WT is the time-bandwidth product (or coherent process-
ing gain), with W being the noise bandwidth of the receiver and 
T being the duration of the received signal [3].  Note that the 
post-correlation SNR is dominated by the smaller of qSNR  and 

DNR. The accuracies of the TDOA/FDOA estimates are 
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where Brms  is the signal’s rms (or Gabor) bandwidth in Hz,   

Drms  is the signal’s rms (or Gabor) duration in seconds [3]; we 

                                                                 
1 SNR (non-italic) represents an acronym for signal-to-noise 
ratio; SNR (italic) represents the SNR for )(ˆ ks . 
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will refer collectively to these two signal parameters as the 
signal’s “rms widths”. 

In this paper we present results for two different com-
pression approaches for TDOA/FDOA estimation.  The first, 
called R/I quantization, applies block-adaptive quantizers 
(BAQ) to the real and imaginary parts  of the signal [7], and the 
second uses a wavelet transform together with an adaptively 
allocated set of quantizers [8].   

A BAQ technique has been applied to the compression of 
synthetic aperture array (SAR) signals [5], where block-
adaptive quantizers designed for Gaussian signals are applied to 
the real and imaginary components.  However, for the 
TDOA/FDOA case considered here, the signal’s pdf is not 
known nor is it expected to be Gaussian. Thus, first, we derive 
bounds on the SNR performance of the BAQ technique when 
applied to radar and communication signals and investigate the 
impact on TDOA/FDOA estimation.  Simulation results are 
compared to these bounds to show that they are indeed viable.  
Second, we develop a wavelet-based algorithm and demonstrate 
through simulations that it outperforms the R/I quantization 
approach for signals of interest.  Finally, the wavelet-based 
method is briefly discussed in a setting that considers a trade-
off between quantization and decimation for TDOA/FDOA 
emitter location.  This idea is generalized to the following: cer-
tain wavelet coefficients can be eliminated with less impact on 
the TDOA/FDOA accuracy than expected from a mean-square 
quantization error point of view.   

2. R/I QUANTIZATION METHOD 

The R/I quantization methods decrease the number of bits 
used to represent signal samples by converting each sample to a 
form that is more coarsely quantized; this is done on a block-
by-block basis by scaling the real and imaginary samples in a 
block by scale factors rγ  and iγ , respectively, and then 

rounding to the desired number of bits. For analysis purposes 
we consider that the compressed signal is unscaled before cross-
correlation. We consider two ways of scaling: (i) Multiply-
Scaling: multiplying the samples in a block by an appropriate 
positive factor chosen to set to 1’s all the non-sign bits of the 
largest-magnitude sample in the block, and (ii) Shift-Scaling: 
left-shifting the bits of the samples in a block by an amount 
chosen to shift the most-significant 1 of the largest-magnitude 
sample in the block into the MSB position.  Thus, shift-scaling 
is multiply-scaling with a scaling factor that is a power of two.   

The quantized signal can be considered to have a B = b + 1 
bit representation of the form bBBBBS L321• , where S de-

notes the sign bit, • denotes the binary point, and the Bi’s de-

note the b bits used to represent the magnitude.  Then 

12/2 22 b
q

−=σ  is the variance of the quantization noise [6].  

After scaling and quantizing the real part of )(ˆ ks , we get 
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where )(ker is the quantization noise; a similar expression for 

the imaginary part can be written.  Using this and defining the 
signal peak-to-rms parameters 
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it is possible to show [7] that ααα ∆=≈ ir  for the signals of 

interest and that the SNR of the complex signal after compres-
sion and decompression is bounded by 
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From this we see that the degradation due to quantization 

is more pronounced when SNR is large or when α is large (or 
both); of course, when SNR is large a larger SNR loss might be 
more easily tolerated by the system.  Note that larger values of 
α reduce the bound on the post-quantization SNR; large α cor-
responds to signals that are “peaky”– such as speech, while 
small α corresponds to signals that are not – such as FM sig-
nals. 

For multiply-scaling this upper bound can be very nearly 
achieved.  However, when using shift-scaling there is no guaran-
tee that this bound will be even close to being achieved.  Shift-
scaling can only assure that the scaled version of the largest 
signal sample lies in )1,2/1[ , which leads to the lower bound 

given in 
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These bounds can be used to establish bounds on the 

cross-correlator output SNR with quantization that, together 
with simulations, show that it is possible to reduce the quanti-
zation to B = 4 bits per real part sample and B = 4 bits per 
imaginary part sample and suffer negligible reduction in output 
SNR (see Figure 1) and in TDOA/FDOA accuracy (see Figure 3 
discussed later).  Fewer than B = 4 bits has been found to be 
unsatisfactory due to the excessive nonlinearity of the quantiza-
tion.  Figure 2 shows the theoretical and simulated results for 
both the quantized and the nonquantized cases for a simulated 
single-sideband signal with B = 4.  For the case shown it is clear 
that there is little impact on the output SNR; this is true in 
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general when 2/ qsPSQR σ∆= is kept higher than either SNR or 

DNR. This is easily seen by recognizing that  
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so that the output SNR is  
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Thus, ccSNR is dominated by the lowest of SNR, DNR, 

and SQR.  Thus, when either (or both) of the signals has low 
SNR, the additional impact of moderate quantization is negligi-
ble.  If both signals have high SNR then even moderate quanti-
zation has a significant impact, but that is a case where perhaps 
the degradation can be tolerated. 

3.  WAVELET TRANSFORM METHOD 

The wavelet transform compression algorithm [8] consists 

of breaking the signal into blocks of pN 2= samples, applying 
an L-level wavelet transform to each block for L<p (i.e., stop-
ping the cascade of wavelet transform filter bank stages at the 

level where the filter outputs have L
B NN 2/=  elements), 

grouping the resulting N wavelet coefficients into LK 2=  sub-

blocks of Lp
BN −= 2  samples each, and adaptively quantizing 

each of these subblocks.  For the complex baseband signals used 
here, this procedure is applied independently to the real and the 
imaginary components.   

The subblocks of the wavelet coefficients are formed 
within wavelet scale levels as follows: the N/2 wavelet trans-
form coefficients from the first filter bank stage are grouped 

into 12 −L  subblocks of Lp−2 coefficients each, the N/4 wavelet 
transform coefficients from the second filter bank stage are 

grouped into 22 −L  subblocks of Lp−2 coefficients each, . . ., 

and finally the Lp−2  wavelet transform coefficients from the 

last filter bank stage form a single subblock, and the Lp−2   
scaling coefficients from the last stage also form a single sub-
block.  

Each one of these subblocks is quantized with a quantizer 
designed to achieve the desired level of quantization noise.  The 
choice of these quantizers is made easy by the fact that the 
wavelet transform preserves energy; this property can be used 
to show that the proper choice of the quantizer cell width is 
given by 
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where SQR is the desired signal-to-quantization noise ratio and 

Px  is the power of the input signal  x(n)  (in this case, either 

)(ˆ ksr  or )(ˆ ksi ).  Thus, to obtain a desired SQR, the quantiz-

ers  }Q . . . ,Q ,Q{ K21  should each have a quantization step size 

given by ∆. Then the number of bits  kB  used by the k th quan-

tizer is chosen to assure that the resulting quantizer covers the 
range of the k th subblock.  This leads to the rule  
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where the maximum is taken over the wavelet coefficients in the 
k th block and the symbol  a  0  means Athe smallest integer not 

less than 0 that is larger than a ;@ this means that when the 
expression in parentheses in the equation for Bk  is negative we 

set  0 = Bk . 

In addition to sending the quantized wavelet coefficients, 
this scheme requires sending side information to the receiver 
about the number of bits used for each quantizer as well as the 
step size used.  If the maximum number of bits used by any of 
the subblocks is maxB , then the allowable quantizers are those 

that use between 0 and  maxB  bits, for a total of  1+Bmax  

different quantizers; the number of bits required to specify 
which of these is used for a specific subblock is   

1)+(B2 maxlog  bits.  Since this must be done for each of the K 

subblocks, we require  1)+(B  K 2 maxlog  bits of side informa-

tion; side information on the quantizer step size also must be 
sent, which will be no more than the number of bits to which 
the original signal is quantized (we have assumed 8 bits here).  
So the total amount of side information is 

 
.  (bits)  8 + 1)+(log  x   = max2side BKR  

 
Simulations have shown that it is possible to limit maxB  to 7 

bits. 
In this approach, the wavelet transform is used together 

with bit allocation to provide a means of reducing the number of 
bits per (real or imaginary) sample with negligible degradation 
of the TDOA/FDOA accuracy.  This scheme accepts a specific 
desired signal-to-quantization ratio (SQR) and attempts to 
minimize the number of bits needed to achieve that SQR value.  
In practice, the desired SQR can be set either (i) to be roughly 
equal to the estimated SNR of the signal to ensure that the im-
pact of the compression on the TDOA/FDOA accuracy is neg-
ligible, or (ii) to some fixed a priori value.   

An algorithm parameter that can be adjusted is called Bmin; 
it is possible to set all values of Bk , as determined above, that 

are below some specified value Bmin to zero.  This helps to 
eliminate wavelet coefficients that contain only noise, and thus 
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helps to reduce the amount of information that must be trans-
mitted.  Increasing Bmin causes a larger number of coefficients to 
be set to zero and can therefore increase the compression ratio 
with only a small impact on accuracy. 

The R/I quantization and wavelet compression methods 
described above have focused on minimizing the mean-square 
error (MSE) due to compression.  However, because the goal is 
to estimate TDOA/FDOA, the minimum MSE criterion is not 
the most appropriate one because it fails to fully exploit how 
the signal’s structure impacts the parameter estimates.  Because 
TDOA/FDOA accuracy depends not only on SNR but also on 
the signal’s rms bandwidth and rms duration (see (1)), com-
pression approaches that can reduce the amount of data while 
negligibly impacting the signal’s rms widths are desired. Ac-
cordingly, one intent of increasing Bmin in the wavelet method is 
to remove small wavelet coefficients that may contribute insig-
nificantly to the signal’s rms widths. The wavelet transform 
approach is a natural tool to enable removing time-frequency 
components of the signal that contribute very little to the sig-
nal’s rms widths.  These ideas are natural generalizations of 
results we have obtained to determine the correct balance be-
tween quantization and decimation for data compression for 
TDOA systems, which we present here to illustrate the poten-
tial for a more general wavelet-based approach. 

We now investigate this trade-off between decimation and 
quantization.   Assume that we quantize the complex signal 
samples using 2B bits (B for the real part, B for the imaginary 
part) and that we sample it at sF complex samples/second.  If 

the signals are collected for T seconds, then the total number of 
bits collected is sBTF2 .  System requirements often specify a 

fixed length of time, Tl, for the data transmission over the link at 
a rate Rl bits/second.  Then the total number of bits collected 
must be able to be sent over the link at rate Rl in no more than 
link time Tl ; thus, the constraint to satisfy is lls TRBTF ≤2 .  

Equivalently, if we define TTRR ll /= as an effective rate and 

assume equality in the constraint we get 
 

sBFR 2= .                               (3) 

 
Now consider that the received signals are filtered and deci-
mated to a bandwidth of fW (now fs WF = for critical sam-

pling of the complex signals after decimation) and assume that 
the signals= spectra are flat so that the two SNRs don’t depend 
on fW .  After filtering and decimation, the signal to be trans-

mitted is quantized using 2B bits per complex sample (B bits 
for the real part and B bits for the imaginary part ). The result is 
that the decimated and quantized signal has, from (2),  ap-
proximate SNR given by  
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and the output SNR then depends on the filtered bandwidth 
and the quantization level according to  
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where  DNR   is the SNR of (k)d̂ , the signal that is not quan-

tized.  Using Equation (5) in Equation (1) gives a bound on 
TDOA accuracy that depends on the bandwidth after  decima-
tion ( fW Hz) and the quantization level (B bits), that is 
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Using R/2B = Wf  from the Arate-bandwidth-bits@ con-

straint in (3) with fs WF =  gives 
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where it is really the bracketed term that is of interest here, 
since it shows the tradeoff between decimation and quantiza-
tion.  It is important to remember that (6) includes the rate-
bandwidth-bits constraint, so for a fixed R, increasing B neces-
sarily decreases Wf , and vice versa.  The nonbracketed term in 

(6) just scales the result up or down depending on the values of 
the system parameters effective rate R and collection time T.  
However, one important insight does come from the first term: 
the bound on  στ  varies as the -3/2 power of the rate  R ; thus, 

if you double the allowable rate you get almost three times 
better accuracy, and if you quadruple the allowable rate you get 
eight times better accuracy.  The reason that increasing the data 
rate improves the accuracy is because we have constrained the 
time available to transmit the data, so increasing the data rate 
allows an increase in the amount of information about the signal 
that can be transmitted.  This is an important insight into the 
system design issues. 

To compute the bracketed term in (6) we first compute  
(B)SNRq  using (4).  Then it is used in (6) to compute the 

bracketed term for a particular set of values for the parameters 



 

 WA7b- 18

á, B, SNR, and DNR.  Plots of the bracketed term in (6) versus 
B, parameterized by á, SNR, and DNR reveal the proper way to 
choose the optimal value of B; that is, how to tradeoff decima-
tion and quantization.   Since the value of  R does not affect 
these curves, the optimal level of quantization is not set by the 
allowable data rate.  Instead, the optimal degree of quantization 
is set by the interplay between the SNRs of the two signals and 
the peak factor of the signal to be quantized.  Once this level of 
quantization is determined, the appropriate amount of decima-
tion is defined by determining the allowable amount of band-
width by solving (3) for the sampling rate Fs given the allowable 
data rate and the number of bits determined above.   Figure 2 
shows a plot of the bracketed term in (6) for the case of effec-
tive rate R=10 kbps, signal BW=100 MHz, original B=8 bits, 
α=5, SNR=20, DNR=20.  The desired operating point is where 
the curve is at a minimum; however, note that for this case the 
minimum requires use of a very small number of bits, where the 
theory of quantization used here breaks down.  Thus, in this 
case we would choose B=4 bits as the best operating point and 
the signal would be decimated to 1250 Hz.  For that choice the 
resulting τσ  is 1.7 times lower than that for decimation only; 

note that quantization alone can not meet the link requirements 

for this case.  If instead the signals had 2=α  (e.g., and FM 
signal), SNR=20, and DNR=20 the resulting τσ  would be 

nearly 3 times lower for combined quantization and decimation 
compared to decimation alone. 

This investigation shows that compression algorithms that 
balance quantization noise and the reduction of rms widths can 
be more effective than just quantization.  In other words, to 
understand the performance of the wavelet technique we must 
really consider how the quantization’s zeroing of the 
coefficients impacts the signals rms widths, and to improve its 
performance we should seek to zero-out wavelet coefficients 
that contribute insignificantly to the signal’s rms widths. 

4.  SIMULATION RESULTS 

Simulations are used to demonstrate the performance of 
the wavelet transform using adaptive quantization method.  
These simulations also made use of the compression-correction 
method proposed in [9], in which prior to sending the com-
pressed signal it is cross-correlated with its original version and 
the location of the peak of this correlation surface is then sent 
to the other platform where it is subtracted from the peak loca-
tions of the surface computed there.  Such an approach is very 
effective at removing bias imparted by the compression 
method.   

The results presented here are for the case of a radar pulse 
train whose samples between pulses have been removed by a 
pre-compression detection procedure; timing pointers are also 
sent to allow reassembling the pulses into their original timing 
relationships.  The pulse trains are complex baseband linear FM 
signals having a pulse width of 4 µs and a frequency deviation 

of ±0.7 MHz, and consisted of 4096 samples generated at 4 
MSPS using 8 bits/sample for the real samples and 8 
bits/sample for the imaginary samples.  The signal that was not 
compressed had an SNR of DNR = 40 dB; the signal that was 
compressed had SNRs prior to compression in the range 

[ ]40,10∈SNR dB. 

The R/I quantization scheme used multiply scaling on 
blocks of 128 samples and quantized the samples to 4 
bits/sample for the real samples and 4 bits/sample for the 
imaginary samples. 

The wavelet transform method used a transform having 
size of N = 2048 and L = 8 levels.  Thus, the number of sub-
blocks per transform was 256, each having 8 samples per sub-
block.  The values SQR = 10 dB and  Bmin = 2 were used. 

Figure 3 shows three plots. Each plot shows three curves: 
no compression, wavelet transform (WT) compression, and R/I 
quantization.  The first two plots show the achieved TDOA 
and FDOA accuracies, respectively, as a function of the com-
pressed signal’s SNR for the R/I and wavelet transform (WT) 
methods.  The third is a plot of the achieved compression ratios 
vs. the compressed signal’s SNR.  The impact of R/I quantiza-
tion on the TDOA/FDOA accuracies can be negligible when a 
2:1 compression ratio (4 bit quantization) is used.  The wavelet 
method, however, can achieve a much larger compression ratio 
but at the expense of about 25% larger TDOA error on but 
virtually no degradation in the FDOA error. 

5.  REFERENCES 

[1] P. C. Chestnut, “Emitter location accuracy using TDOA 
and differential doppler ,”  IEEE Trans. Aero. and Elec-
tronic Systems, vol. AES-18, pp. 214-218, March 1982. 

[2] S. Stein, “Differential delay/doppler ML estimation with 
unknown signals,”  IEEE Trans. Sig. Proc., vol. 41, pp. 
2717 - 2719, August 1993. 

[3] S. Stein, “Algorithms for ambiguity function processing,”  
IEEE Trans. Acoust., Speech, and Signal Processing, vol. 
ASSP-29, pp. 588 - 599, June 1981. 

[4] D. J. Matthiesen and G. D. Miller, “Data transfer minimi-
zation for coherent passive location systems,” Report No. 
ESD-TR-81-129, Air Force Project No. 4110, June 1981. 

[5] U. Benz, K. Strodl, and A. Moreira, “A comparison of 
several algorithms for SAR raw data compression,”  IEEE 
Trans. Geosci. Remote Sensing, vol. 33, pp. 1266 - 1276, 
Sept. 1995. 

[6] Y. Neuvo, “Digital filter implementation considerations,” 
in S. Mitra and J. Kaiser (Eds.), Handbook for Digital Sig-
nal Processing, New York: John Wiley & Sons, 1993. 

[7] M. L. Fowler, “Coarse quantization for data compression 
in coherent location systems,” under revision for IEEE 
Transactions on Aerospace and Electronic Systems. 

[8] M. L. Fowler, “Data compression for TDOA/DD-based 
location system,” US Patent #5,991,454 issued Nov. 23, 
1999, Lockheed Martin Federal Systems. 



 

 WA7b- 19

[9] G. Desjardins, “TDOA/FDOA technique for locating a 
transmitter,” US Patent #5,570,099 issued Oct. 29, 1996, 
Lockheed Martin Federal Systems. 

 

Solid: Theoretical Bounds - Quantized
Dash-Dot: Simulation - Quantized
Dashed: Theory - Not Quantized
Circles: Simulation - Not Quantized

 

Figure 1: Bounds and Simulation Results for Output 
SNR using R/I Approach 
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Figure 2: "Performance Factor" for Decimation vs. 
Quantization Tradeoff 
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Figure 3:Simualtions  for TDOA/FDOA Accuracy 
using R/I Quantization and Wavelet Method 


