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 Abstract – Two related data compression methods for 
radar signals are described and analyzed.  The methods 
use the singular value decomposition (SVD) of a data 
matrix  containing one pulse in each row to exploit pulse-
to-pulse redundancy.   By using a rank-one 
approximation to the data matrix it is possible to achieve 
compression ratios typically of the order of several 10’s 
and sometimes over 150:1 for typical radar types while 
maintaining accurate location; the amount of 
compression depends on the radar’s parameters.  
Alternatively, by retaining a single  singular vector as an 
extracted prototype pulse, it is possible to use it for 
matched filter processing, thus providing an improved 
method for doing noncoherent time-of-arrival (TOA) 
processing for a slight cost of a small amount of 
additional data to be sent. 

 
I. INTRODUCTION 

A common way to locate electromagnetic emitters is to 
measure the time-difference-of-arrival (TDOA) and the 
frequency-difference-of-arrival (FDOA) between pairs of 
signals received at geographically separated sites [1].  For 
radar emitters there are (at least) two alternatives for 
measuring the TDOA/FDOA values.  The coherent method 
measures the TDOA/FDOA by coherently cross-correlating 
the signal pairs [2], and the noncoherent method measures 
the time-of-arrival (TOA) of the pulses (and possibly 
frequency-of-arrival (FOA) also) at each platform and then 
combines the TOA (and possibly the FOA) measurements 
made at two platforms into TDOA (and possibly FDOA) 
estimates [8].  From a theoretical viewpoint, the coherent 
method has a clear advantage because it more completely 
utilizes the information embedded in the received signals.  
Furthermore, the noncoherent approach requires that the 
SNR at each platform be high enough that the pulses can be 
detected using simple thresholding of the leading edge 
because no matched filter is available.  After pulse detection 
the TOA/FOA can be measured (TOA is usually measured 
using leading edge methods or pulse centroid methods, while 
various frequency estimation techniques are used to measure 
FOA).  On the other hand, coherent methods exploit the 
time-bandwidth processing gain [2] to allow, in principle, 
operation at much lower SNRs at all platforms; although in 
practice at least one platform generally needs to be at an 
SNR high enough to detect the pulses to allow signal 
acquisition processing such as identifying the presence of a 
signal of interest.  

However, coherent processing does have a serious 
drawback: signal samples received at one platform must be 
transmitted over a data link to another platform in order to 
perform cross correlation. Because these links are rarely 
completely allocated to the sole task of transferring data for 
location processing, the allocated link rate usually is 
insufficient to accomplish this in a timely manner – 
especially for the radar location case with its wide 
bandwidths.  To mitigate this, various data compression 
approaches have been proposed [3] – [7], although they have 
been designed for the generic signal case and can’t fully 
exploit the characteristics of radar signals.  For the radar 
case, the fact that (at least) one platform will be operating at 
an SNR high enough to detect pulses can be exploited as a 
first step towards reducing the transferal by not sending the 
samples between detected pulses.  However, even with this 
reduction the transferal time is still excessive given allocated 
rates for current and projected data links. 

In this paper, rather than approaching the problem 
directly from the perspective of data compression, we will 
propose a way to extract a prototype pulse from the high-
SNR platform and then send that pulse to the other platforms 
(possibly together with some side information), where it can 
be used for measuring the TDOA/FDOA values.  As a result 
we get a significant amount of data compression, but viewing 
the scheme more as a prototype pulse extraction leads to 
some alternative viewpoints.  We discuss two different ways 
to use the extracted prototype: one based on noncoherent 
TOA methods (which we will call “semi-coherent”) and one 
based on coherent TDOA/FDOA methods.  The semi-
coherent method uses the extracted pulse as a pulse-matched 
filter allowing improved pulse detection and TOA 
measurement; this allows all but one platform to be at low 
SNR, although not as low   as for coherent processing.  On 
the other hand, the coherent method uses the prototype pulse 
together with some side information (a sequence of pulse 
phases, magnitudes, and times) to reconstruct a complete 
pulse train at the other platform that is suitable for cross 
correlating with that platform’s locally received pulse train.  
We will show how to use the singular value decomposition 
(SVD) together with some pulse alignment processing to 
effectively extract the prototype pulse.  We then will discuss 
how to exploit the prototype pulse in the semi-coherent and 
coherent approaches. 
 

II. EXTRACTIING THE PULSE 

The proposed extraction approach is based on the fact 
that a radar emits a train of similar pulses. Because modern 



 

radars can change modes we assume that preliminary 
subtrain-extraction processing has grouped the signal of 
interest into one or more subtrains, each having pulses from 
the same mode of operation – such processing is a standard 
part of any electronic warfare system (this processing also 
removes pulses from other emitters) [9].  We extract a 
prototype pulse for each subtrain identified at the high-SNR 
platform, although for simplicity of discussion we will 
assume here that there is a single subtrain.  The pulses in a 
subtrain look very much alike – except that they may have 
random phase shifts if the radar is not pulse-to-pulse phase 
coherent. Subtrain extraction provides a series of similar 
pulses separated by their original pulse repetition interval 
(PRI); the separation is indicated in the figure in terms of 
number of samples N1, N2, etc., which will be nearly-equal 
integers.  The subtrain pulses are then gated and the inter-
pulse samples are removed and the numbers of samples 
removed  between the pulses (N1, N2, etc.) are extracted as 
side information; the resulting series of pulses can be thought 
of as a pulse train having an artificially short PRI.  (This 
gating can be viewed as preliminary compression – but note 
that all compression ratios stated in this paper do not include 
this gating-based compression.)  Finally, the gated pulse 
train is processed to extract the prototype pulse and any other 
required side information, which is then sent over the data 
link along with the gating-extracted pulse separations.     

The mathematical basis of the prototype extraction 
processing is the singular value decomposition (SVD) [10].  
If we put the gated pulses of the baseband equivalent signal 
for the received pulse train into a matrix – with one pulse per 
row – we would have a rank one matrix if (i) there were no 
noise or propagation effects, (ii) the pulses were perfectly 
time aligned – i.e. perfect leading-edge detection & gating, 
and (iii) the radar’s PRI were an integer multiple of the 
sampling interval T.  All but the first of these causes of 
increased rank can be mitigated by performing time 
alignment on the pulses in the pulse matrix.  The needed 
time alignment values can be determined by computing 
pulse-to-pulse cross correlations.  The pulses are then time 
aligned using a fractional delay FIR filter [11] although we 
are currently investigating the use of DFT based alignment. 
By using this alignment step the resulting pulse matrix is 
closer to being a rank-one matrix than it was before the 
alignment.   

Let p denote the number of pulses in the pulse subtrain 
and let n denote the number of samples per pulse kept after 
gating; then the total number of samples is pn.  If we denote 
the p×n (aligned) pulse matrix by P, its SVD is 
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where r is the rank of P, iu  is the ith left singular vector, H
iv  

is Hermitian transpose of the ith right singular vector, and 

iσ is the ith singular value, ordered such that 1+σ≥σ ii .  

Each term in the sum in (1) is a rank-one matrix.  If we 
truncate this sum to only k < r  terms we get the rank-k 
matrix  
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that best approximates P in the sense that the sum of the 
squares of the elements of P - Pk is smaller than for any other 

rank-k matrix.  Note that in our case the matrix contains the 
pulses and therefore this approximation gives the smallest 
mean square error (MSE) between the original pulse train 
and the approximate pulse train formed by concatenating the 
de-aligned rows of Pk.  As we will see later, this minimum 
MSE property is the basis for using the SVD for both of the 
two viewpoints considered here.  

In the perfect-signal scenario, where there is no noise 
and no pulse misalignment, P is rank one and 0=σi  for i ≥ 

2.  However, when signal perturbations are present, P has 
higher rank, but still has a few dominant singular values.  
Therefore, to get maximum compression we strive to 
approximate P by a matrix having a low rank while having a 
small MSE – in fact we will approximate it with a rank-one 
matrix.   

The effect of the time alignment is to concentrate the 
energy of the pulse matrix into the first singular value,   
producing a matrix that is closer to a rank one matrix. The 
effect of the noise on the singular values is uniformly spread 
across all the singular values – this is in fact a known result 
that is exploited by previous applications of the SVD to 
signal processing problems.  Thus, when we truncate the 
SVD to k terms as in (2) we are throwing away all the noise 
that exists in the thrown away singular values, and – if we’ve 
done our job right – we have thrown away very little of the 
signal because it is mostly concentrated in the singular 
values that we keep.  The effect of this is to increase the 
SNR of the reconstructed signal found by concatenating the 
rows of Pk into a pulse train; thus, not only do we compress 
the signal but we get an improvement in SNR rather than a 
degradation due to compression!  This simultaneous 
compression and noise reduction will be demonstrated in the 
next section after further discussing the 
compression/decompression processing. 

To extract a prototype pulse we consider the case where 
we truncate the SVD to a single term (k = 1) to get P1; we’ll 
demonstrate later that the accuracy achieved with k = 1 is 
excellent.  To specify P1 we need the p×1 vector 1u  (i.e., the 

1st left singular vector), the n×1 vector 1v  (i.e., the 1st right 

singular vector),  and the scalar 1σ  (i.e., the 1st singular 

value).  Note, then, that H
1v  is the same size as a pulse (n 

samples).  Thus, we can interpret vector H
1v  as a single 

prototype pulse that has been extracted from the original 
pulse train, which is a nice viewpoint given that the radar’s 
receiver would process its received pulse train using a pulse 
template as a matched filter; this leads to what we call a 
semi-coherent approach.  Alternatively, we can view the 
concatenation of the rows of P1 as forming an approximation 
to gated and aligned pulse train, which together with the 
alignment and gating side info can be used to create an 
approximation of the original pulse train.  These two 
viewpoints will be explored in the next section. 

 

III. EXPLOITING THE PULSE 

A. Semi-Coherent Method 
For simplicity here we consider the TDOA-only case, 

where we assume that there is no relative motion between 
emitter and platforms.  In the semi-coherent method we use 



 

the prototype pulse )(kp pp  as a matched filter to detect the 

pulses at the low SNR platform and to measure the TOA 
values for each pulse in the received pulse stream.  The 
prototype pulse is also used to measure the TOA values at 
the platform where it was extracted. Then the corresponding 
TOA values from the two platforms are subtracted to form a 
sequence of TDOA values that are then averaged to give the 
desired TDOA estimate. 

To do this processing we need to extract a prototype 
pulse from the subtrain received at the high SNR platform.   
Simply choosing one of the detected pulses as the prototype 
pulse is possible, although some rules would have to be used 
to select the best candidate – that would likely be difficult to 
do in the presence of fading, emitter scanning, and multipath. 
However, we’ll see that the SVD method gives a 
mathematically-based rule to generate a prototype pulse by 
exploiting all the data in the pulse subtrain.  We seek a 
prototype pulse that is highly correlated (positive or negative 
– since we check the magnitude of the matched filter output 
because we are not assured that the emitter is pulse-to-pulse 
coherent) with all the pulses in the received pulse subtrain.   
One criteria that could be used to find such a pulse is to seek 
a prototype pulse that maximizes the sum of the magnitude 
squares of the correlations.  In other words, we seek )(kp pp  

such that if )(kpi  are the pulses in the received pulse 

subtrain, then we maximize  
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where we have used vectors to represent the corresponding 
pulses.  However, we now show that this is equivalent to 
choosing the  prototype pulse vector such that  it has unit 
norm and minimizes 
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for appropriately chosen iα .  Minimizing this over the 

choice of ppp  and iα  can be done in two steps: find the 

minimizing iα  for a given ppp  and then find the minimizing 

unit-norm ppp .  The minimizing iα  are *, >=<α ppii pp , 

for which we get 
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which is minimized when C in (3) is maximized.  However, 
recalling that the SVD approximate matrix minimizes the 
MSE between the elements of the matrix and the 
approximation, from (4) it is clear that E2 is minimized when 

we choose H
pp 1vp =  and 11u. σ=  where iα  is the ith 

element of  . .  Thus, we see that extracting a prototype 
pulse using the SVD-based method described above satisfies 
our criteria of maximizing (3). 

In the semi-coherent method, the side information 
needed in addition to the prototype pulse is the TOA 
measurements made at the high SNR platform using the 
pulse-matched filter.  Of course, this side information is not 
truly side information in this case because they have to be 

sent for the noncoherent method, too.  After the prototype 
pulse is received at the other platform it is used as a matched 
filter to detect subtrain pulses from the received signal and to 
measure their TOA values, which are then combined with 
the TOA values sent from the extracting platform. 

The major advantage of doing this is that unlike 
noncoherent TOA-based processing, this method uses 
matched filter processing rather than leading-edge processing 
to measure the TOA.  This enables operation at a lower SNR 
at the nonextracting platform than is possible with 
conventional noncoherent methods.  In addition it gives a 
compression ratio on the order of 
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if we ignore any possibility of further coding the samples of 
the prototype pulse.  This compares the amount of data 
needed for the coherent method with no compression to the 
amount needed for  the proposed semi-coherent method.  
Thus, we see that the amount of compression is the number 
of pulses to be used in the processing.  Because the number 
of pulses needed to achieve sufficient TDOA accuracy can 
range between several tens of pulses to several thousands of 
pulses (depending on the radar type as well as other system 
considerations), this method can give extremely large 
compression ratios. 
 
B. Coherent Method 

In the coherent method we seek a reconstructed pulse 
train that would minimize the MSE between it and the 
original pulse train before it was compressed.  For a given 
compression ratio (e.g., for a given number of terms retained 
in (2)) this clearly is the pulse train formed from the de-
aligned rows of the approximating pulse matrix Pk, due to 
the SVD minimizing MSE.  For k = 1, this is equivalent to 
minimizing E2 in (4).  Thus, we see that the semi-coherent 
method and the coherent method have the same minimization 
requirement and it is met through finding the SVD-based 
rank-one approximate matrix P1.   

In the coherent method, in addition to the prototype 
pulse we need side information consisting of the values of 
the left-singular vector 1u , the fractional time alignments,  

and the number of samples between adjacent pulses that 
were removed by gating.  The left-singular vector 1u is used 

to reassemble the truncated SVD form of the pulse matrix 
(up to the scaling factor of  1σ ), after which the time 

alignment information is used to undo the time alignment 
and, finally, zeros are inserted in place of the gating-removed 
signal samples.  Thus, for the cost of a modest amount of 
side information it is possible to reconstruct a MSE-
minimizing pulse train suitable for coherent cross-
correlation. 

In particular, the approximating matrix P1 is formed 
from 

 
H
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from which it is clear that each row in P1 is a complex-valued 

scalar multiple of T
1v , where the complex scalar for the ith 



 

row is the ith element in 1u times 1σ ; it is also clear that 1σ  

does nothing more than amplitude scale the entire 
reconstructed pulse train and can therefore be omitted. Thus, 
we can change (7) to  
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from which we see that 1u  holds the reconstruction 

magnitudes and phases.  Finally, the rows of 1
~
P  have to be 

time shifted to undo the alignment processing time shifts, 
after which the results are assembled into a pulse train (with 
zeros inserted between pulses to undo the effect of pulse 
gating) that is cross-correlated with the pulse train received 
at the other platform.  Thus, the information that is needed to 
reconstruct the signal is: 

1. The n×1 right singular vector (RSV) 1v  (i.e., the 

prototype pulse) 
2. The p×1 left singular vector (LSV) 1u  (i.e., the 

reconstruction magnitudes and phases)  
3.  The p-1 time shifts  
4.  The p-1 numbers of inserted zeros (N1, N2, … Np-1) 

Using this data at the other platform the reconstructed pulse 
train can be formed and then cross-correlated with the signal 
data received locally at that platform to estimate the 
TDOA/FDOA.     

How much compression can we get from this scheme? 
We first consider the case where a single pulse is put into 
each row of P, but we will see that it is often better to put 
multiple pulses per row.  Thus we have that P is p×n, where 
p is the number of pulses (i.e. rows) in the pulse matrix and 
n is the number of samples per pulse.  Thus, if no 
compression is used there are np samples to be sent.  To 
send Pk in (2) we only need to send: (i) k singular values, 
which requires k values, (ii) k left singular vectors each 
having p elements, which requires kp values, and (iii) k right 
singular vectors each having n elements, which requires kn 
values.  The total number of values needed to specify the 
reduced-rank SVD approximate Pk is k(1+p+n) values; if k = 
1 we don’t need the singular value so this becomes p+n.  
Assuming that we use the same number of bits for each 
element as we did for the signal samples, the compression 
ratio is 
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where k is the # of singular vectors retained, p is the number 
of pulses to be processed, and n is the number of samples per 
pulse.  Results on how to code the SVD extracted 
information is given in [12] as well as results that show for 
the coherent approach that the CR is maximized when the 
pulse matrix is made square.  Thus, it may be desirable in 
many cases to put more than one pulse per row when using 
the coherent approach.  When that is done the compression 
ratio for the coherent method becomes 
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An additional advantage of the coherent approach is that 

the SVD’s noise reducing property provides a reconstructed 
signal that is an improved version of the original rather than 
a compression-degraded version.  Thus, a large compression 
ratio is achieved without the usual degradation associated 
with lossy compression methods.   Furthermore, the coherent 
method allows the low-SNR platforms to operate at lower 
SNR values than for the semi-coherent method because the 
coherent processing provides the maximum time-bandwidth 
gain. 
 
C. Performance Results 

Monte Carlo simulations were performed to 
demonstrate the capability of the semi-coherent processing 
method.  Two variations of the semi-coherent method were 
simulated to provide insight into the performance: (i) using a 
noise-free prototype and (ii) using the SVD-extracted 
prototype.  Obviously the first variation is not possible in 
practice but is included here solely for comparison purposes.  
The simulation results are shown in Figure 1 for the case of 
102 pulses of 40 samples each.  The signal-to-noise ratio for 
the signal being compressed (denoted as DNR) was taken as 
20 dB, the signal-to-noise ratio for the signal not being 
compressed (denoted SNR) varied from –2 dB to 30 dB; 100 
Monte Carlo simulation runs were performed.  The figure 
shows results for the semi-coherent method using (i) the 
SVD-prototype, (ii) the noise-free (NF) prototype taken 
directly from the noise-free pulse train, and (iii) the coherent 
cross-correlation method without compression (for 
reference).  From the figure it is seen that as long as SNR ≥ 
0 dB (for this case) there is no difference between the three 
methods.   

To see why, consider the NF-prototype case where n is 
the number of samples in a pulse. When the NF-prototype is 
cross-correlated with pulse train #1 to estimate the ith TOA, 
the variance is given by [1] 
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where rmsβ is the rms (or Gabor) bandwidth of the signal.  At 

the other platform we can write DNR = αSNR for some α, so 
the corresponding TOA estimate on the other pulse train (#2) 
has variance  
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The resulting TDOA estimate (assuming that the two TOA’s 
are uncorrelated, which is only an approximation) has 
variance given by 
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After averaging these we get that  
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On the other hand, if we compute the TDOA using the 

coherent method (without compression) the variance is given 
by [1] 
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Recall that DNR must be high enough to detect the pulses 
prior to gating, say DNR ≥ 10 dB, for which (15) can be 
shown to be approximately equal to the variance in (14).   

However, there is an additional constraint that must be 
met for  (14) and  (15) to be valid: the cross-correlation 
output SNR must exceed about 15 dB.  For semi-coherent 
processing, (14) is valid if the output SNR in (11) must 
exceed 15 dB: this requires that nSNR ≥ 15 dB.  However, 
for coherent processing,  (15) is valid if 
 

 dB 15  )( 111 ≥++ ⋅DNRSNRDNRSNR
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For the SNR/DNR scenarios here this reduces to npSNR ≥ 15 
dB which shows that the coherent method can work at an 
SNR that is p times lower than for semi-coherent.  In other 
words, the coherent method has a processing gain of np 
whereas the semi-coherent method has a processing gain of 
only n. For the example given in Figure 1 (n = 40, p = 102) 
the semi-coherent method should break down when SNR < –
1 dB while the coherent method doesn’t break down until  
SNR < –21 dB.  This explains why the semi-coherent 
simulation result deviates from the coherent result at SNR = 
–2 dB as shown in Figure 1. 

To give a rough idea of how the accuracy of noncoherent 
processing compares we use [8] 
 

SNR

tR
noncoTDOA

2
2

, =σ ,                         (17) 

where tR is the rise time of the pulse.  For the simulation in 
Figure 1 the rise time was about 2 µs, which at an SNR of 15 
dB gives a TDOA rms error of about 350 ns, which is 
extremely large compared to the results obtained using the 
semi-coherent and coherent methods. 

Monte Carlo simulations were also performed to 
demonstrate the capability of the coherent processing 
method.  Due to space limitations we show only the TDOA 
results; the FDOA results are similar in nature.  The TDOA 
accuracy results are shown in Figure 2, where it is seen that 
using the SVD method actually improves the accuracy 
despite the fact that it requires much less data transferal; at 
moderate SNR values the improvement is on the order of a 3 
dB improvement in effective SNR.  The case considered here 

had p = 50 pulses and n = 43 samples/pulse giving a 
compression ratio of 23:1. 

Table 1 gives some idea of the large compression ratios 
achievable for typical scenarios.  Four emitter scenarios are 
listed with typical pulse widths (PW), pulse repetition 
intervals (PRI), bandwidths (BW), number of complex 
samples per pulse, and the number of pulses that would 
typically be processed in order to get desirable accuracies.  In 
addition, the resulting compression ratios (after gating) are 
computed using the equations given above.  From these 
results it is clear that these methods can give very large 
compression ratios.  Furthermore, if SNR is high enough 
then the semi-coherent and coherent methods have the same 
TDOA accuracy; however, the coherent method can operate 
at lower SNR values due to its higher time-bandwidth gain. 
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     Table 1 

PW 
(µs) 

PRI 
(µs) 

BW 
(MH

z) 

# Pulses 
p 

Samples/
pulse 

n 

CRsemi 

Eq. (6)   
CRcoho 

Eq. (10) w/ k=1 

0.5 600 4.0 80 – 300 6 80 – 300 10.7 – 21.0 
1.5 10 2.0 1,500 – 14,000 8 1,500 – 14,000 54.5 – 167.1 
6.5 70 2.5 250 – 1,500 24 250 – 1,500 38.5 – 94.6 
9.0 240 2.8 60 – 400 38 60 – 400 23.6 – 61.4 

 


