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Abstract:  An effective way to locate RF transmitters is to measure the time-difference-of-arrival (TDOA) and the 
frequency-difference-of-arrival (FDOA) between pairs of signals received at geographically separated sites, but this 
requires that samples of one of the signals be sent over a data link.  Often the available data link rate is insufficient 
to accomplish the transfer in a timely manner unless some form of lossy data compression is employed.  A common 
approach in data compression is to pursue a rate-distortion criterion, where distortion is the mean-square error 
(MSE) due to compression.   This paper shows that this MSE-only approach is inappropriate for TDOA/FDOA es-
timation and defines a more appropriate, non-MSE distortion measure.  This measure is based on the fact that in 
addition to the inverse dependence on SNR, the TDOA accuracy also depends inversely on the signal’s RMS (or 
Gabor) bandwidth and the FDOA accuracy also depends inversely on the signal’s RMS (or Gabor) duration.  The 
paper discusses how the wavelet transform can be used to exploit this measure.    
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1. INTRODUCTION 
 

An effective way to locate electromagnetic emit-
ters is to measure the time-difference-of-arrival 
(TDOA) and frequency-difference-of-arrival (FDOA) 
between pairs of signals received at geographically 
separated sites [1],[2],[3].  The measurement of 
TDOA/FDOA between these signals is done by co-
herently cross-correlating the signal pairs [2],[3], and  
requires that the signal samples of the two signals are 
available at a common site, which is generally ac-
complished by transferring the signal samples over a 
data link from one site to the other site.  An important 
aspect of this that is not widely addressed in the lit-
erature is that often the available data link rate is in-
sufficient to accomplish the transfer within the time 
requirement unless some form of lossy data compres-
sion is employed.  For the case of Gaussian signals 
and noises, Matthiesen and Miller [4] established 
bounds on the rate-distortion performance for the 
TDOA/FDOA problem and compared them to the 
performance achievable using scalar quantizers, 
where distortion is measured in terms of lost SNR 
due to the mean square error (MSE) of lossy com-
pression. However, these results are not applicable 
when locating radar and communication emitters 
because the signals encountered are not Gaussian.   

The two signals to be correlated are the complex 
envelopes of the received RF signals having RF 
bandwidth B.  The complex envelopes can then be 

sampled at  complex-valued samples per sec-
ond; for simplicity here we will assume critical sam-
pling, for which .  The signal samples are 
assumed to be quantized using 2b bits per complex 
sample (b bits for the real part, b bits for the imagi-
nary part), where b is large enough to ensure fine 
quantization.  The two noisy signals to be correlated 
are notated as 

BFs ≥

F Bs =

 

[ ] [

[ ] [ )()()()(

)()()(ˆ

)()()()(

)()()(ˆ

kjvkvkjdkd

kvkdkd

kjnknkjsks

knksks

irir

irir

+++=

+=

+++=

+=

  (1)                             

 
where s(k) and d(k) are the complex baseband signals 
of interest and n(k) and v(k) are complex white Gaus-
sian noises, each with real and imaginary parts no-
tated as indicated.  The signal d(k) is a delayed  and 
doppler-shifted version of s(k).  The signal-to-noise 
ratios (SNR) for these two signals are denoted SNR 
and DNR, respectively1.   

To cross correlate these two signals one of them 
(assumed to be  here) is compressed, transferred )(ˆ ks

 
1 SNR (non-italic) represents an acronym for signal-to-noise ratio; 
SNR (italic) represents the SNR for . )(ˆ ks
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to the other site, and then decompressed before cross-
correlation.  Signal  has SNR of  
after lossy compression/decompression [5], and the 
output SNR after cross-correlation is given by 
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To ensure maximum performance it is necessary 
to employ a compression method that is designed 
specifically for this application.  However, much of 
the past effort in developing general lossy compres-
sion methods has focused on minimizing the MSE 
due to compression; furthermore, even compression 
schemes developed for TDOA/FDOA applications 

have also limited their focus to minimizing the MSE 
[4],[5],[7].  But when the goal is to estimate 
TDOA/FDOA, the minimum MSE criterion is likely 
to fall short because it fails to exploit how the sig-
nal’s structure impacts the parameter estimates.  In 
such applications it is crucial that the compression 
methods minimize the impact on the TDOA/FDOA 
estimation performance rather than stressing minimi-
zation of MSE as is common in many compression 
techniques.   

 
where WT is the time-bandwidth product (or coherent 
processing gain), with W being the noise bandwidth 
of the receiver and T being the duration of the re-
ceived signal and is a so-called effective SNR 
[3].  The accuracies of the TDOA/FDOA estimates 
are governed by the Cramer-Rao bounds (CRB) 
given by [3] 
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Achieving significant compression gains for the 
emitter location problem requires exploitation of how 
signal characteristics impact the TDOA/FDOA accu-
racy.  For example, the CRBs in (3) show that the 
TDOA accuracy depends on the signal’s RMS band-
width and that the FDOA accuracy depends on the 
signal’s RMS duration.    Thus, compression tech-
niques that can significantly reduce the amount of 
data while negligibly impacting the signal’s RMS 
widths have potential.  We briefly show in the next 
section that for the TDOA-only case it is possible to 
exploit this idea through simple filtering and decima-
tion together with quantization to meet requirements 
on data transfer time that can’t be met through quan-
tization-only approaches designed to minimize MSE.  
These results are encouraging because it is expected 
that non-MSE approaches more advanced than sim-
ple filtering and decimation will enable even larger 
improvements in performance, and this motivates the 
results presented in Section 4, where the use of the 
wavelet transform for exploiting the time-frequency 
structure of the signal is explored. 

 
where  is the signal’s RMS (or Gabor) band-
width in Hz given by  
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with being the Fourier transform of the signal 

 and   is the signal’s RMS (or Gabor) dura-
tion in seconds given by  
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2.  NON-MSE DISTORTION CRITERIA 
 

 
 
3.  JOINT DECIMATION & QUANTIZATION 
 

In this section we consider minimizing TDOAσ  
while adhering to a fixed data link rate constraint.  If 
we consider that the signals are collected for T sec-
onds, then the total number of bits collected is 

.  System requirements often specify a fixed 
length of time for the data transmission.  Thus, if the 
transfer is constrained to occur within T  seconds 
and the data link can transfer bits at the rate  
bits/second then the total number of bits collected is 
constrained to satisfy .  Equivalently, if 
we define  as a fixed effective rate and 
assume equality in the constraint (i.e., fully utilize the 
allocated data link resources) we get 
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This requirement may be achieved in various ways 
by selecting appropriate values of  B  and , where 
different values of 

b
B  would be obtained by filtering 

and decimating to a lower sample rate, and different 
values of b would be obtained through coarse quanti-
zation.  A subtle aspect here is that strict application 
of Equation (4) implies that bandwidth B  is allowed 
to  increase without bound as  decreases; however, 
the signal itself imposes an upper bound on this 
bandwidth.  

b

Under this rate constraint, we investigate the op-
timal trade-off between decimation and quantization.  
Let the received signals be filtered and decimated to a 
bandwidth of W .  After filtering and decimation, 
the signal to be transmitted is quantized using 2b bits 
per complex sample (b bits for the real part and b bits 
for the imaginary part ).  

f

For simplicity we consider using ideal lowpass 
filters operating on the complex-valued baseband 
signal and we do not restrict the decimation factor to 
rational values, as would be done in practice. Thus, if 
we choose the filter such that the bandwidth is re-
duced by some factor γ  with 0 1<<γ  then we can 
reduce the sampling rate by the factor γ  also.  Obvi-
ously, for practical signals, as we change the filter’s 
cutoff we will change the signal’s SNR and its RMS 
bandwidth; how these quantities change with the cut-
off depends on the signal’s spectral shape.  For sim-
plicity yet insight,  we will assume that the signal’s 
spectrum is  flat, so that the effective SNR of the fil-
tered signals will not change with the cutoff fre-
quency.  In practice though, since the signal’s spec-
trum typically trails off at high frequency, the effec-
tive SNR will vary to some degree as the signal is 
filtered.  If the filter has cutoff frequency W , 

then the RMS bandwidth becomes 

2/f

fW8.1rmsB2 =π , 

the time-bandwidth product becomes TW , and the 

output SNR becomes .  
The decimated and quantized signal has SNR given 
by [5] 

f

f × effSNRf TWW =)o (SNR
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Finding the minimum of the bracketed term in 
(8) as a function of b, provides the value of b that 
optimally  trades between decimation and quantiza-
tion.  Note that the value of  R  does not affect these 
curves; therefore, the optimal level of quantization is 
not set by the allowable data rate.  Once this optimal 
number of bits b is determined, the appropriate 
amount of decimation is determined using 

, given the allowable effective rate R.  
To investigate the characteristics  of this result we 
consider the following.  Say we have the following 
signal scenario: α = 3.5, T = 1 s, the signal’s avail-
able bandwidth is B = 4 kHz, the original signal sam-
ples were done with  b = 10 bits, the data link rate is 
R

R/2b = W f

l  = 2.4 kbps and the link time constraint is Tl  = 10 s, 
then the effective rate is R = 24 kbps.  Plots of the 
rate-distortion (R-D) curves for the two cases of (1) 
SNR=30 dB and DNR=60 dB, and (2) SNR=10 dB 
and DNR=20 dB are given in Figure 1 and Figure 2.  
R-D curves are given for the cases of using quantiza-
tion only, decimation only, and joint quantization and 
decimation.   

 
where α  is the signal’s peak factor (i.e., the ratio of 
the signal’s peak value to its RMS value).  Using 
these results in (2), the output SNR depends on the 
filtered bandwidth and the quantization level accord-
ing to  
 

).(),( bSNRTW = bWSNR effffo         (6)                             
 

Using Equation (6) in Equation (3) gives a bound on 
TDOA accuracy that depends on the amounts of 
decimation and quantization, and is given by 
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This result has no constraint on the effective rate; it 
simply shows the impact of W and b on the TDOA 
accuracy.  However, we wish to consider the rate 
constrained case, so the effective rate constraint gives  

, which after use in (7) removes the de-

pendence on W  and gives 
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where it is really the bracketed term that is of interest 
here, since it shows the tradeoff between decimation 
and quantization, and can be considered as a decima-
tion-quantization performance factor (for which 
smaller is better).  It is important to remember that 
(8) includes the rate constraint, so for a fixed R, in-
creasing b necessarily decreases W , and vice versa.  
The nonbracketed term in (8) just scales the result up 
or down depending on the values of the system pa-
rameters R and T.   

f
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For the high SNR case in Figure 1 we see that 
the quantize/decimate method uniformly outperforms 
both quantize-only and decimate-only (except at rates 
above 48 kbps where quantize-only and quan-
tize/decimate are equivalent because the quan-
tize/decimate method uses the full signal BW for 
those rates).  It should also be observed that for the 
high SNR case, decimate-only is better than quantize-
only at low rates but not at high rates.  Thus, for the 
high SNR case we see that, both mathematically and 
practically, the quantize/decimate approach is fa-
vored at all effective rates.  For the low SNR case, 
however, the rate-distortion curves in Figure 2 seem 
to indicate that quantize-only is nearly uniformly 
preferred over quantize/decimate and 
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Figure 1: R-D Curve for High SNR 

 
decimate-only.  However, it is important to recognize 
that in this case the effective rates at which quantize-
only is clearly better are precisely those rates at 
which the mathematics calls for excessive quantiza-
tion (below 4 bits) to meet the rate constraint, and the 
resulting severe nonlinearities can be detrimental to 
TDOA in ways not captured by (7).  Thus, from a 
practical viewpoint, quantize/decimate is preferred at 
these lower rates.  Stated another way, quan-
tize/decimate gives a viable means for meeting the 
lower rate constraints without suffering excessive 
nonlinearity effects from quantization.  Thus, even in 
the low SNR case, the quantize/decimate approach is 
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Figure 2: R-D Curve for Low SNR 

an effective way to meet the imposed rate constraint.   
For further discussion of this approach see [6]. 
 
4.  WAVELET TRANSFORM METHOD 
 

Obviously, lowpass filtering and decimation 
used above is the simplest way to exploit the RMS 
bandwidth’s effect on TDOA accuracy.  These results 
point the way to more general filtering/decimation 
approaches for TDOA-only  as well as the use of  the 
wavelet transform to exploit the joint effect of RMS 
bandwidth and RMS duration for systems that sup-
plement  TDOA with frequency-difference-of-arrival 
(FDOA).   

The wavelet transform has been found to be very 
useful for signal and image compression [9].  It is an 
extension of the Fourier transform (FT) in the sense 
that it provides a decomposition of a signal in terms 
of a set of component signals.  However, the wavelet 
transform decomposes a signal into a weighted sum 
of component signals that are localized in time as 
well as in frequency; this allows them to provide a 
more efficient representation of signals with time 
varying spectra.  Accordingly, each wavelet coeffi-
cient conveys how much of the signal’s energy is in a 
specific time-frequency cell.  A simple example of 
such cells are shown in Figure 3.  The rectangles in 
Figure 3 represent where each of the wavelet coeffi-
cients is positioned in the time-frequency plane.  A 
particular characteristic of the wavelet transform is 
that it yields broad frequency resolution and narrow 
time resolution at high frequencies while giving nar-
row frequency resolution and broad time resolution at 
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low frequencies. Thus, the highest frequency wavelet 
coefficients  contain information about the content of 
the signal in the upper half of the signal’s bandwidth; 
the lowest frequency wavelet coefficients contain 
information about the content of the signal over its 
entire duration.  Wavelet-based compression based 
on a MSE criterion exploits the fact that a signal may 
be concentrated in this time-frequency plane.  Signals 
typically have their energy concentrated in specific 
areas of the time-frequency plane, while large regions 
of the time-frequency plane may contain only very 
little or none of the signal’s energy.  A small number 
of bits is then spent encoding these small energy 
time-frequency regions, while a large number of bits 
is spent encoding the regions that exhibit large en-
ergy concentrations.  

T/2 T3T/4T/4T/8 3T/8 5T/8 7T/80

Fs/2

Fs/4

Fs/8

Fs/32
Fs/16

 

Figure 3: Wavelet Time-Frequency Cells 

 
The wavelet transform compression algorithm 

[7] consists of breaking the signal into blocks of 
samples, applying an L-level wavelet trans-

form to each block for L<p (i.e., stopping the cascade 
of wavelet transform filter bank stages at the level 
where the filter outputs have  elements 
[9]), grouping the resulting N wavelet coefficients 
into 

pN 2=

L
B NN 2/=

LK 2=  subblocks of  samples each, 
and adaptively quantizing each of these subblocks.  
For the complex baseband signals used here, this 
procedure is applied independently to the real and the 
imaginary components.   

Lp−= 2BN

The subblocks of the wavelet coefficients are 
formed within wavelet scale levels as follows: the 
N/2 wavelet transform coefficients from the first filter 
bank stage are grouped into  subblocks of 

coefficients each, the N/4 wavelet transform 
coefficients from the second filter bank stage are 
grouped into  subblocks of coefficients 
each, . . ., and finally the 2  wavelet transform 

coefficients from the last filter bank stage form a sin-
gle subblock, and the   scaling coefficients from 
the last stage also form a single subblock.  

12 −L
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Each one of these subblocks is quantized with a 
quantizer designed to achieve the desired level of 
quantization noise.  The choice of these quantizers is 
made easy by the fact that the wavelet transform pre-
serves energy; this property can be used to show that 
the proper choice of the quantizer cell width is given 
by 
 

 

 
where SQR is the desired signal-to-quantization noise 
ratio and  is the power of the input signal   (in 
this case, either  or ).  Thus, to obtain a 
desired SQR, the quantizers  {  should 
each have a quantization step size given by ∆. Then 
the number of bits   used by the k

Px x(n)

(ˆ ksr )(ki

Q }Q . . . ,Q , K21

th quantizer is 
chosen to assure that the resulting quantizer covers 
the range of the kth subblock.  This leads to the rule  
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where the maximum is taken over the wavelet coeffi-
cients in the kth block and the operator   means 
Athe smallest integer not less than 0 that is larger than 

;@ this means that when the expression in parenthe-
ses in the equation for  is negative we set  . 

)(0 a
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In addition to sending the quantized wavelet co-
efficients, this scheme requires sending side informa-
tion to the receiver about the number of bits used for 
each quantizer as well as the step size used.  If the 
maximum number of bits used by any of the sub-
blocks is , then the allowable quantizers are 
those that use between 0 and   bits, for a total of  

 different quantizers; the number of bits re-
quired to specify which of these is used for a specific 
subblock is    bits.  Since this must be 
done for each of the K subblocks, we require  

 bits of side information; side infor-
mation on the quantizer step size also must be sent, 
which will be no more than the number of bits to 
which the original signal is quantized (we have as-
sumed 8 bits here).  So the total amount of side in-
formation is 

maxB
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1)+max

maxB
1+Bmax
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.  (bits)  8 + 1)+  x   = maxside KR  
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Simulations have shown that it is possible to limit 
 to 7 bits. maxB

In this approach, the wavelet transform is used 
together with bit allocation to provide a means of 
reducing the number of bits per (real or imaginary) 
sample with negligible degradation of the 
TDOA/FDOA accuracy.  This scheme accepts a spe-
cific desired signal-to-quantization ratio (SQR) and 
attempts to minimize the number of bits needed to 
achieve that SQR value.  In practice, the desired SQR 
can be set either (i) to be roughly equal to the esti-
mated SNR of the signal to ensure that the impact of 
the compression on the TDOA/FDOA accuracy is 
negligible, or (ii) to some fixed a priori value.   

An algorithm parameter that can be adjusted is 
called Bmin; it is possible to set to zero all values of 

, as determined above, that are below some speci-
fied value B

kB
min.  This helps to eliminate wavelet coef-

ficients that contain only noise, and thus helps to re-
duce the amount of information that must be trans-
mitted.  Increasing Bmin causes a larger number of 
coefficients to be set to zero and can therefore in-
crease the compression ratio with only a small impact 
on accuracy. 

Simulations are used to demonstrate the per-
formance of this wavelet transform method.  These 
simulations also made use of the compression-
correction method proposed in [8], in which prior to 
sending the compressed signal it is cross-correlated 
with its original version and the location of the peak 
of this correlation surface is then sent to the other 
platform where it is subtracted from the peak loca-
tions of the surface computed there.  Such an ap-
proach is very effective at removing bias imparted by 
the compression method.   

The results presented here are for the case of a 
radar pulse train whose samples between pulses have 
been removed by a pre-compression detection proce-
dure; timing pointers are also sent to allow reassem-
bling the pulses into their original timing relation-
ships.  The pulse trains are complex baseband linear 
FM signals having a pulse width of 4 µs and a fre-
quency deviation of ±0.7 MHz, and consisted of 4096 
samples generated at 4 MSPS using 8 bits/sample for 
the real samples and 8 bits/sample for the imaginary 
samples.  The signal that was not compressed had an 
SNR of DNR = 40 dB; the signal that was com-
pressed had SNRs prior to compression in the range 

dB. [ 40,10∈SNR ]
The wavelet transform method used a transform 

size of N = 2048 and L = 8 levels.  Thus, the number 
of subblocks per transform was 256, each having 8 
samples per subblock.  The values SQR = 10 dB and  
Bmin = 2 were used. 

Figure 4 shows three plots. Each plot shows two 
curves: using no compression (dashed curve) and 
using the wavelet transform (WT) compression (solid 
curve).  The first two plots show the achieved TDOA 
and FDOA accuracies (each normalized by the “no 
compression” value attained at  SNR = 10 dB ), re-
spectively, as a function of the compressed signal’s 
SNR.  The third plot shows the achieved compression 
ratios vs. the compressed signal’s SNR.  The wavelet 
method achieved a compression ratio of around 6:1 
with a slight degradation in TDOA accuracy but with 
virtually no degradation in the FDOA accuracy. 

The wavelet compression method described 
above has focused on minimizing the MSE due to 
compression.  However, because the goal is to esti-
mate TDOA/FDOA, the minimum MSE criterion is 
not the most appropriate one because it fails to fully 
exploit how the signal’s structure impacts the pa-
rameter estimates.  Because TDOA/FDOA accuracy 
depends not only on SNR but also on the signal’s rms 
bandwidth and rms duration (see (3)), compression 
approaches that can reduce the amount of data while 
negligibly impacting the signal’s rms widths are de-
sired.  Accordingly, one effect of increasing Bmin in 
the wavelet method is to remove small wavelet coef-
ficients that may contribute insignificantly to the sig-
nal’s rms widths. The wavelet transform approach is 
a natural tool to enable removing time-frequency 
components of the signal that contribute very little to 
the signal’s rms widths. 

Obviously, it is desirable to find a means to op-
timally remove time-frequency components so as to 
maximize compression while minimizing the impact 
on accuracy.  Such a goal is made difficult by the 
interlinked impact of such removal on  SNR and the 
RMS widths.  However, it is possible to demonstrate 
the potential of such an RMS-width-based approach 
via an ad hoc removal method.  As an experiment we 
set the odd-indexed quantizer sizes  to zero.  Be-
cause these 256 quantizers are spread throughout the 
time-frequency plane, this has the effect of creating a 
(nonuniform) checkerboard-like pattern of zero-
valued wavelet coefficients throughout the time-
frequency plane.  Such an approach ensures that 
along any vertical line drawn at a time instant, not all 
of the coefficients are thrown away, and similarly 
along any horizontal line.  Therefore, except for sig-
nals with sparse wavelet transforms, this approach 
should be effective at preserving RMS widths while 
allowing a large number of wavelet coefficients to be 
removed.   

kB

The signal used here has a normalized RMS 
bandwidth of 0.15 and a normalized RMS duration of  
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Figure 4: MSE-Based WT Method. Solid = WT 
Results; Dashed = No Compression 

 
0.58, normalized to frequency range of [-1,1] and 
time range of [-1,1], respectively.  The legend in 
Figure 4 indicates that after the MSE wavelet com-
pression approach (with Bmin = 2) that the RMS 
widths are unchanged. 

Simulation results using this RMS-width ap-
proach are shown in Figure 5, where the legend 
shows the negligible impact on the RMS widths of 
zeroing out odd-indexed quantizers.  These results 
also show the large increase in compression ratio due 
to throwing away such a large number wavelet coef-
ficients.  The accuracy of TDOA and FDOA are seen 
to be degraded, however not by an unreasonable 
amount, given the high level of compression 
achieved.  Figure 6 shows the original noisy signal 
(SNR = 25 dB) and the resulting signal after the MSE 
WT method and the RMS-width WT method, from 
which it is clear that the RMS-width approach results 
in a signal that looks very much unlike the original, 
and therefore suffers a large decorrelation loss, which 
is likely the source of the TDOA/FDOA accuracy 
degradations.  This source of degradation needs fur-
ther consideration to improve the RMS-width ap-
proach.  None the less, it is remarkable that it is pos-
sible to remove so much of the signal, resulting in a 
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Figure 5: RMS-Width WT Method. Solid = WT 
Results; Dashed = No Compression 

 
very poor replica of the original signal (from a MSE 
viewpoint), and still preserve the ability to obtain 
fairly accurate TDOA/FDOA estimates.  It is this 
characteristic and potential that motivates our interest 
in refining this method. 
 
5.  CONCLUSIONS 
 

We have investigated the potential for using a 
non-MSE based distortion criterion for data compres-
sion when computing TDOA/FDOA for emitter loca-
tion systems.  This criterion is motivated by the de-
pendence of the TDOA/FDOA accuracies on the sig-
nal’s RMS bandwidth and duration.  It was argued 
that methods that increase the compression ratio but 
do not reduce these RMS widths have potential.  To-
wards this end we proposed, analyzed, and demon-
strated a simple way to balance the MSE and RMS 
bandwidth effects through the use of quantization and 
decimation.  It was argued that the wavelet transform 
provides a useful means to reduce signal data quan-
tity without significantly reducing the RMS widths.  
An ad hoc means of eliminating wavelet coefficients 
was shown via simulation to result in a large im-
provement in compression ratio; however, the 
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TDOA/FDOA accuracies did suffer noticeable deg-
radation.  However, given the fact that the resulting 
signal was so severely perturbed from the original, 
the accuracies achieved are indeed remarkable and 
motivate further investigation into non-ad hoc ap-
proaches. 
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Figure 6: Original signal compared to those aris-
ing from MSE and RMS approaches 
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