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ABSTRACT 
 
The location of an emitting target is estimated by intercepting its 
emitted signal and sharing them among several sensors to 
measure the time-difference-of-arrival (TDOA) and the 
frequency-difference-of-arrival (FDOA).  Doing this in a timely 
and energy efficient fashion, which is especially important for 
wireless sensor network applications, requires effective data 
compression. Since the commonly used MSE distortion measure 
is only weakly related to optimal TDOA/FDOA estimation, in 
this paper, we derive a new class of non-MSE distortion 
measures for TDOA/FDOA estimation using the concept of 
Fisher information. We then use these new distortion measures 
to compress the data using a wavelet packet transform and show 
that it improves TDOA/FDOA estimation accuracies relative to 
using the MSE-based compression. Finally, the scheme of 
applying our algorithms in a wireless sensor network is 
proposed, and energy efficiency and accuracy enhancement of 
the proposed scheme over that of traditional scheme using MSE 
is shown through the simulations. 

 

1. INTRODUCTION 
 
A common way to locate an electromagnetic emitter is to 
measure the time-difference-of-arrival (TDOA) and the 
frequency-difference-of-arrival (FDOA) between signals 
received at pairs of sensors [1],[2]. This requires that the 
samples of one signal are sent over a data link, where data 
compression can reduce latency and save energy.  Some past 
results are available on the issue of compression for 
TDOA/FDOA applications [3]�[7], but only recently have 
researchers begun to explore other than the standard mean-
square-error (MSE) distortion measure [5]�[7].  We introduced a 
new non-MSE distortion measure [5] that uses a CRLB-based 
measure for the TDOA-only problem.  However, we have found 
[5] that optimizing this measure was difficult because the form 
that the CRLB-based distortion metric takes depends on the 
relationships between the SNRs at the two sensors.   

More recently we have shown [6] that a Fisher-information-
based approach avoids these difficulties and we developed a 
general method for a single-parameter problem.  A key 
advantage for this approach is that if the noise is uncorrelated 
between sensors, then the total Fisher information is the sum of 
the Fisher information from each sensor.  Compression only 

impacts one sensor so we can avoid the complicating cross-
sensor couplings.   

In this paper we attack the two-parameter TDOA/FDOA 
problem by extending our single-parameter ideas [6] and explore 
trade-off issues that arise. We assume that the TDOA/FDOA 
estimation processing and compression processing are not jointly 
designed � this is motivated by our belief that sensors are likely 
be called to provide data to other processing systems that are 
independently designed. With our proposed compression 
scheme, we develop a new cooperative scheme for the sensor 
nodes in the wireless sensor network to adapt the compression 
scheme to the sensor-target geometry.   
 
 2.  FISHER-INFORMATION-BASED DISTORTION  
  
Fisher information matrix (FIM) is a well-known concept in 
estimation theory [8]. It quantifies how much information a data 
set provides about the parameters to be estimated.  Let 

wθsx += )(  denote a real random vector consisting of a 
deterministic signal vector )(θs  parameterized by 2×1 parameter 
vector θ , and corrupted by a white noise vector w with variance 
σ2.  The FIM for this θ  is the 2×2 matrix )(θJ with elements 
given by  
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The FIM specifies an information ellipse � the larger the better � 
with semi-axes along the FIM�s eigenvectors and whose lengths 
are the square roots of the eigenvalues.   

Lossy compression of the data vector x  changes the FIM. 
Namely, it reduces the on-diagonal elements 

iiJ , which makes 
the post-compression information ellipse smaller; it is unclear 
what effect it would have on the cross-information and hence the 
tilt of the ellipse.  In the single-parameter case [6] the way to 
proceed was clear: compress so as to minimize the reduction in 
J11 for a given bit budget.  But how should we proceed in the 
two-parameter case?  There are several possibilities, but our 
choice is to minimize the impact on the information ellipse�s 
semi-axis lengths while neglecting the impact on the ellipse�s 
tilt: this implies minimizing the reduction of the FIM�s 
eigenvalues.  A simple, effective measure is to minimize the 
reduction of the sum of the eigenvalues, which is equivalent to 
minimizing the reduction of the trace of the FIM.  However, 
sometimes TDOA accuracy is more important than FDOA 
accuracy, or vice versa; so, we use a weighted trace.  Thus, our 
goal is to seek an operational rate-distortion method that 



minimizes the reduction in αJ11 + (1-α)J22 with 0 ≤ α ≤ 1 while 
satisfying a budget on the total number of bits.    

The signals at sensors S1 and S2 with unknown TDOA of 
dn  

and FDOA of 
dv  can be modeled by: 
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where s[n] is a complex baseband signal, v0 and  n0  are unknown 
nuisance parameters that need not be estimated, and w1[n] and 
w2[n] are uncorrelated complex Gaussian white noise with 
variances 2

1σ and 2
2σ , respectively. The signal-to-noise ratios 

(SNR) for these two received signals are denoted by SNR1 and 
SNR2, respectively. We assume here that x1[n] is the signal that 
gets compressed.   

As shown in [6], the TDOA Fisher information depends on 
the DFT coefficients (with the DFT frequencies running over 
both negative and positive frequencies) while the FDOA Fisher 
information depends on the signal samples themselves.   
       After quantization of the DFT coefficients the data-
computable TDOA Fisher information measure is 
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where X1[m] is the normalized DFT of the data at sensor S1 and 
qm is the quantization noise variance of the mth DFT coefficient 
when quantized to an allocated bm bits.  The tilde (~) in (3) and 
(4) indicates that the quantity is based on the noisy data rather 
than the unavailable underlying signal.   

After quantization of the signal samples the data-
computable FDOA Fisher information measure is 
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with 
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where x1[n] is the signal data at sensor S1 and qn is the 
quantization noise variance of the nth signal data sample when 
quantized to an allocated bn bits.   
        

3.  ALGORITHM DEVELOPMENT 
 

The quantities 
dd nnJ~  and 

dd vvJ~  capture the impact of compression 

on TDOA and FDOA accuracies, so an operational R-D method 
can be developed based on maximizing the weighted sum of 
these two Fisher information (i.e., the weighted trace of the 
FIM) under a bit constraint.  Notice that the TDOA Fisher 
information depends on frequency-domain characteristics 
whereas the FDOA Fisher information depends on time-domain 

characteristics. It is difficult to optimize 
dd nnJ~ and 

dd vvJ~  jointly 

unless we transform the data )(1 nx  into a domain where 
frequency resolution and time resolution are jointly provided. 
Hence, an orthonormal wavelet packet transform has been used. 
Given an orthonormal wavelet packet basis set { }nψ  with 
coefficients { }nc  for the data vector x1, we wish to select a 
subset Ω of coefficient indices and an allocation of bits  

}|{ Ω∈= ibB i  to those selected coefficients such that the 
selected/quantized signal is 

                         ∑
Ω∈

=
i

iicψ~~
1x                                      (7) 

where }|~{ Ω∈ici are the quantized version of the selected 

coefficients, maximizing 
dd nnJ~  and 

dd vvJ~  while meeting a 

constraint on the total number of bits. 
In our implementation we do not code coefficients 

individually, but rather operate on blocks of coefficients.  The 
wavelet packet coefficients ci are grouped into M  blocks, where 
each block contains coefficients at the same frequency and over 
a short contiguous temporal range.  The joint TDOA/FDOA 
distortion measure is then 
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where j is the block index, 2

jq  is the quantization noise variance 

in the jth block, and fj and tj are the frequency and central time, 
respectively, of the jth block.   Bits are allocated to the 
coefficients using the method of [9] to maximize (8) for a given 
rate constraint. To compare the proposed scheme with a 
traditional scheme, we also allocated bits to the wavelet packet 
blocks to minimize MSE under the bit constraint.   

Although the developed scheme is applicable to all varieties 
of signals, we use a linear FM radar signal to illustrate the 
method. A 3-level wavelet packet transform is performed and 8 
subbands are produced; each subband is partitioned into 8 
blocks.  Moreover, to focus attention on the lossy compression 
performance, no entropy coding is applied after quantization. 

Simulation results are shown in Figure 1 and Figure 2.   In 
Figure 1 we see the inherent trade-off that is controlled by the 
choice of α, whose value controls whether the algorithm favors 
TDOA accuracy, FDOA accuracy, or balances them to achieve 
the closest operation to the no compression case.  Figure 2 
illustrates how changing the compression ratio affects the TDOA 
and FDOA accuracy under several scenarios: the results labeled 
�Goal Attained� illustrate the performance when the impact on 
TDOA and FDOA is balanced.  In these figures the advantage of 
using our distortion measures is made clear. 
 



 
Figure 1:  Trade-off between TDOA and FDOA accuracies 
as α is varied for compression ratio 3:1 and SNR1 = 15 dB & 
SNR2 = 15 dB; symbol = denotes the operational point 
(α=0.5) closest to that without compression. 
 

 
                               Figure 2a 

 
                                    Figure 2b  
Figure 2: Effect of compression ratio on (a) TDOA and (b) 
FDOA performance.  A comparison is also made to the case 
of simply sending less data (�Length Reduced�) rather than 
compressing the data. 
 
 

4. SCHEME FOR GEOMETRY ADAPTATION 
 
Besides the TDOA/FDOA accuracies, the location estimation 
accuracy also strongly depends on the geometry of the emitter 
and the sensors [1]. For the 3-D X-Y-Z location case, the 3×3 
location error covariance matrix is [1] 

 
                      11 )( −−= GNGP T                                  (9) 

 
where matrix G is determined by the emitter-sensors geometry 
and N is the diagonal matrix of the TDOA/FDOA estimation 
error variance after compression.  Diagonalizing 1−P  using                  

},,{ 1
3

1
2

1
1

−−−− = λλλdiagAPA 1T  and letting m)(ξAζ T −= , where 

m is the real location of target, leads to 
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where region R is the interior of the error ellipse with the ith 
principal axes length of 2(κλi)½.  

In most sensor-target geometries, the relative importance of 
TDOA and FDOA is set by the target-sensors geometry.  Figure 
1 shows how α controls the compression trade-off between the 
TDOA and FDOA accuracies achieved by our method.  
However, to choose a proper value of α requires knowledge of 
the target�s location � which, unfortunately, is precisely what we 

are trying to estimate.  
However, we can first send a 
small amount of data � enough 
to roughly determine the 
geometry; then that rough 
geometry can be used to 
estimate an appropriate α value 
that would be fed back to the 
compressing sensor and used to 
compress the remainder of the  
signal.  In fact, this can even be 
done to provide repeated 
updates of α as more data is 
compressed and sent; this 
corresponds to updating the 
operating point along the curve 

shown in Figure 1.   
This directly leads to the following simple scheme (not the 

only one) where the compression can be adapted to the 
geometry.  The scheme is shown in Figure 3, where circled 
numbers correspond to the actions of the steps described below. 
    This new geometry-adaptive scheme for applying the Fisher 
information-based algorithm can be described in five steps: 
Step 1: The central node determines the compression ratio and 
its associated operational compression points based on the 
requirement of energy consumption and latency. Then it 
randomly picks J pairs of nodes to get J measurements of TDOA 
and FDOA. In the beginning, one of the 
nodes J1),1,( ≤≤ ii sends a small length of its data to the 
other )2,(i , where a rough measurements of TDOAs }~{ , idn  and 

FDOAs }~{ ,idv  are measured.  

Figure 3: System Scheme



Step 2: }~{ , idn and }~{ ,idv are sent to the central nodes, where the 

rough prediction of the geometry matrix G is estimated.  
Step 3: In term of the estimated geometry matrix G , the central 
node determines the optimal α and informs the nodes )1,(i about 
this choice and the compress ratio. 
Step 4: The nodes )1,(i compress the data according the 
compression ration and the chosen α and send the compressed 
version of its sensed data to the nodes )2,(i . 
Step 5: The nodes )2,(i  measure the }{ , idn and }{ ,idv  with the 

received data from node )1,(i in Step 1 and decompressed data in 
Step 4. The resulting }{ , idn and }{ ,idv are sent to the central node, 

where the final location of the target is determined.  
Simulations are performed as follows: A target can appear 

anywhere in a 2-D 5x5 km2 area, within which a large number of 
sensors is spread. Four sensors are randomly picked to form two 
pairs to estimate TDOA/FDOA. 256 samples are sent in Step 1 
to roughly estimate the geometry. Finally, 4096 samples are 
compressed and shared between each pair. For comparison, the 
4096 data samples are compressed using the MSE measure. In 
the simulation, we use the ratio of the area of circular error 
probable (CEP) [1] with compression to that without 
compression minus 1 (which corresponds to the relative increase 
in CEP) as the metric. 2000 experiments were performed for 
each compression ratio and the average values are shown in 
Figure 4. CEP is estimated by 

2175.0 λλ +  [1].   
                

 
           Figure 4: Effect of compression ratio on CEP. 

 
5. CONCLUSION 

Data compression can be used as a tool for TDOA/FDOA 
location application. But, instead of using traditional MSE 
distortion measure, this paper proposed a new distortion measure 
using the trace of the FIM, which affects the semi-axis lengths of 
the Fisher information ellipse.  As a means of handling the case 
where the two parameters may have differing importance we 
extended this trace-based measure to a weighted trace measure.    

This distortion measure was directly used to develop an 
efficient lossy operational R-D compression algorithm for multi-

sensor emitter location application using a wavelet-packet-based 
block coding scheme. Our simulation results show that lossy 
compression using our distortion measure gives tremendous 
improvement over the compression with traditional MSE in 
estimating TDOA/FDOA.  Furthermore, by adjusting the value 
of α we have shown that it is possible to trade between TDOA 
accuracy and FDOA accuracy. In addition, by realizing that 
geometry information of the emitter and the sensors affect the 
differing importance of TDOA/FDOA accuracies, we proposed a 
geometry-adaptive scheme that uses the cooperation of the 
sensors to determine and adapt the value of α during the 
compression processing and compress the data optimally. The 
approach of using Fisher information to derive distortion 
measures can be extended to other practical estimation 
applications where the lossy compression is needed either in the 
wireless sensor network application or the real-time micro-
sensor system.        
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