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ABSTRACT 

'ins purpose of this paper is to extend 
scattering function concepts to nonstationary and 
correlated scattering and use appropriate exten- 
sions to study optimum array processors in 
inhomogeneous Gaussian random noise fields. For 
this end we will review common functional represe- 
ntations of nonstationary stochastic processes and 
indicate how these functional representations can 
be used for analysis of nonstationary scattering. 
Then we will give expressions for optimum (maximum 
likelihood for Gaussian distributions) scalar and 
array processors in terms of Wigner distributions. 
Finally, we will use Moyal's formula to derive 
expressions for the detection indices in terms of 
Wigner distributions. 

INTRODUCTION 

Scattering functions and their equivalents 
have been used widely for characterization 
stochastic backscattering and multipath propaga- 
tion media. [1,2] Utility of the scattering 
function approach for the design of optimum 
signals and signal processing systems has been 
demonstrated. [ 3 , 4 ]  The scattering function 
approach in its usual applications assumes that 
the scattering process is a wide-sense stationary 
stochastic process and that the scattering process 
from different range intervals is uncorrelated. 
[1,2] In signal processing applications it is of 
particular interest to remove the wide-sense 
stationary scattering assumption and to extend the 
scattering function concept to nonstationary 
scattering processes. Since Wigner distributions 
are effective for characterization of nonstation- 
ary stochastic processes and more generally 
inhomogeneous random fields (multidimensional 
generalizations of nonstationary stochastic 
processes) it is of interest to characterize 
nonstationary scattering via Wigner distributions 
and their transforms. [5,6] Wigner distributions 
have many desirable properties and their applica- 
tion to characterization of nonstationary stochas- 
tic processes and transient signals is currently 
an active research topic. [ 7 , 8 , 9 ]  

This paper will review common functional 
representations of nonstationary stochastic 
processes and indicate how these functional 

representations can be used for analysis of 
nonstationary scattering. 
expressions for optimum (maximum likelihood for 
Gaussian distributions) [lo] scalar and array 
processors in terms of Wigner distributions. 
Finally, we will use Moyal's formula to derive 
expressions for the detection indices in terms of 
Wigner distributions.[9] 

Then we will give 

FUNCTIONAL REPRESENTATION OF NONSTATIONARY 
PROCESSES AND INHOMOGENEOUS RANDOM FIELDS 

Nonstationary processes require two paramet- 
ers for their second order representation: two 
time parameters t,s for the nonstationary covaria- 
nce function R(t,s), time and frequency parameters 
t,X for the Wigner distribution W(t,X), and two 
frequency parameters A , p  for the two-dimensional 
spectral density f(X,p). 2-n parameters are 
required for analogous representations of in- 
homogeneous random fields in the n-dimensional 
parameter space. [ 5 , 6 ]  

We will now discuss the interrelations 
between these three representations. 
distribution (WD) fits between time-time and 
frequency-frequency representation. 

The Wigner 

Originally, Wigner used Wigner distribution 
as a phase-space description of quantum mechanical 
operators. [ll] Its parameters were the conjugate 
variable of position and momentum. 
nized applicability of WD distribution to analysis 
of finite energy signals. [12] Application of WD 
to analysis of nonstationary processes is more 
recent. [5] 

Ville recog- 

Since the primary goal of our work is 
investigation of optimum array processing struc- 
ture, we present needed functional representations 
of inhomogeneous random fields. Random fields are 
random functions of four continuous parameters: 
time and three spatial coordinates. Nonstationary 
stochastic processes are one-dimensional special 
cases or inhomogeneous random fields. 
representatives that arise in discrete array 
processing are also special cases of continuous 
parameter representation and are presented in this 
paper as examples. 

Functional 

Derivation of interrelations between various 
representations is facilitated by spectral 
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representation of harmonizable inhomogeneous 
random fields : 

w E S1 (PROBABILITY SPACE) 

The covariance function of a harmonizable 
random field can be expressed in terms of 2n 
dimensional spectral representation and spectral 
density functions. 

R ( t , s )  = E {  z( t ,u )z ' (s ,u )  1 

The WD of a harmonizable random field is 

Martin [SI has shown that the WD can be calculated 
from the 2n-dimensional spectral density by 

~ t ' ( t , ~ ) =  & ,, e x p I j t . C 1 I f ( X + ~ / 2 , X - C 1 / 2 ) c i C 1  (5) 1 
the 2n-dimensional spectral density by the inverse 
transform 

Some of the important properties of the WD are 
that WD is always real, and it preserves the time 
support of a signal x(t), and frequency support of 
the Fourier transform of X(X). [8] The WD is 
related to the ambiguity function by a double 
Fourier transform. We define the complex am- 
biguity function for a random field by 

The complex ambiguity function and Wigner dis- 
tribution are related by double Fourier transforms 

These equations are the desired double transforms 
that relate WD and ambiguity functions. WD is 
real and can be thought of as a density function, 
where the complex ambiguity function can be 
thought of as a characteristic function of the 
density function. These relations are important 
in establishing connections between WD on one hand 
and the ambiguity function and scattering function 
theory on the other hand. [l] 

It is evident from this discussion that all 
four representations of nonstationary processes 
are isomorphic. 
convenience and in the insight they give. 
interrelations are displayed in Figure 1. 
distributions clearly display the properties of 
the nonstationary properties on the time-frequency 
plane. Two important relations for the Wigner 
distributions are the expression for the inner 
product 

They only differ in practical 
Their 
Wigner 

and Moyal's formula [9]: 

An important special case of Moyal's formula is 
obtained for fl = f2 - gl - g2 = f. 

The two-dimensional spectral density function 
can be used for quantitative determination of how 
nonstationary a harmonizable process is. [7] 
Distribution of f(X,p) in the Ap plane is a 
measure of stationarity/non-stationarity of the 
process. 
the central peak of f(X,p) is an approximate 
ellipse with its major axis along A - p  line. 
narrow ellipse indicates an almost wide-sense 
stationary process, where a broad ellipse indi- 
cates a highly nonstationary process. Ratio of 
major axis to the minor axis length is a quantita- 
tive measure of stationarity. 
technique have been discussed in the S .  Carosso's 
M.S. thesis. [7] Furthermore, f(X,p) can be 
estimated from realizations of stochastic process- 
ing using computationally efficient FFT computa- 
tions. 

Frequently the equal height contours of 

A 

Details of this 
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Figure 1. Bilinear representations of 
homogeneous random fields 

in- 
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REPRESENTATION OF NONSTATIONARY SCATTERING 

The scattering function theory uses so-  
called wide sense stationary sense stationary 
uncorrelated scattering (WSSUS) assumption. 
Without WSSUS assumption a scalar scattering 
function requires four parameters for its represe- 
ntation. [ 1 , 2 ]  For many signal processing 
applications it is of interest to avoid the WSSUS 
assumption. In this section we use linear compact 
operator theory [15] to investigate representation 
of nonstationary scattering by the functional 
representations that were presented in the 
previous section. The starting point for the 
characterization of nonstationary scattering is 
the time-varying impulse response representative 
of the scattering process: 

where H(t,s,w) is the time-varying random response 
at time t to the impulse applied at time s. [ l ]  
The integral operator K is usually not a self 
adjoint operator,but it is reasonable to assume 
that it is a compact operator (finite double 
norm). [15] Then the operator K can be expanded 
in terms of its singular value decomposition: 

where Kt is adjoint of li . 
scattered process can be represented by 

The covariance of the 

where 

and the nonstationary scattering is represented by 

The Wigner distribution of the scattered 
process is: 

= f"W(t,A)f 

where the elements of the matrix W(t,A) are 

{nn(cu)nr(w)} l,Vd,d,(t, X) 

Similarly, in terms of complex ambiguity function 
the representation of the scattered process is: 

= f' A(v ,  T )  f 

where elements of matrix A(v ,T)  are 

In all of these representation the scattering 
process is characterized by E { n r . ( w ) n ; ( w ) )  {blr) and{qJn.). 
The set (,h] is calculated from known transmitted 
signal by 

m 

Effective measurement and characterization of 
inhomogeneous scattering is an important open 
research problem. We have outlined a possible 
approach to this problem. 

1 1  INNER PRODUCT 

q ( t )  OPTIMUM PROCESSING WAVE 

Figure 2 .  Array processor 

OPTIMUM ARRAY PROCESSOR IN TERMS OF WIGNER 
DISTRIBUTION 

The array processor for maximum likelihood 
detection of doubly spread (range and Doppler 
spread) Gaussian scatterers in the Gaussian noise 
is shown in Figure 2 .  Operator K1 represents 
desired scattering and operator KO represents 
undesired scattering such as clutter or rever- 
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beration. 
product: 

Optimum receiver computes the inner 

(27r)" ' J  *h 
P =  ( r ( t ) , q ( t ) )  = J' I ( t ) g ' ( t ) d t  = - 

9i" 
W,,(t,X)dtdX (25) 

This relation has an interesting interpretation. 
Receiver computes the integral of the cross Wigner 
distribution over all time, space and frequencies 
on which the r(&) and g(&) exist. [ 9 ]  Since 
Wigner distribution conserves the time and space 
support of signals and frequency support of their 
Fourier transforms integration needs to be only 
over appropriate support regions. [ 8 , 9 ]  Thus, 
the computation of the log likelihood function 1 
uses all the "information" on time/space frequency 
plane of the Wigner distribution. 

In the case of a discrete array of 
sensors that are located at the spatial 
dinates xi, the processor computes: 

. \  
= / R(t) . g ( t )  f l t  

. h  

points 
coor- 

nr 
= p ,  

Note that the derivation of above array 
processor structure required no specific assump- 
tions as to the array geometry or plane wave 
propagation. 
computed by each sensor processor can be thought 
of as a method for optimal fusion of outputs of 
arbitrarily distributed sensor processors. As it 
can be seen from an example the array processor 
structure for plane wave propagation can be 
simplified. 

Summation of the inner products 

The probability of detection PD of zero mean 
Gaussian signal in uncorrelated (signal and noise 
are mutually uncorrelated) Gaussian noise is given 
by performance measure A and false alarm probabil- 
ity PF 

where the array performance measure A (SIR) is 
given by 

Terms in equation (28)  can be computed by the 
Moyal's formula 

To obtain insight into performance of the 
array processor let us consider a simple plane 
wave propagation example. Let 

Then the performance measure becomes 

Now let the noise be a sum of white noise that is 
uncorrelated between sensors and a correlated 
colored noise: 

( 3 2 )  

where 

then the Wigner distribution of noise is 

( 3 4 )  

If the noise term s(t) is generated by the 
undesired backscattering of the transmitted 
signal, then the Equation (35) is analogous to the 
noise and interference terms of A that are 
obtained for WSSUS scattering. [ l - 4 1  If the 
colored and correlated (sensor to sensor) noise 
component vanishes then, as expected, the perfor- 
mance measure becomes the usual signal to noise 
ratio at the array output. 
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Extension of the above results to optimum array 
processor and signal design is our present 
research topic. 
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