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ABSTRACT

It is shown that transforms arising from square inte-
grable group representations can be used for the detection of
signals in noise. This class of group transforms includes the
Gabor transform and the wavelet transform. We use these
transforms to map the reproducing kernel Hilbert space
(RKHS) associated to a noise covariance into another RKHS;
the RKHS formulation of the detection problem is then ap-
plied to this new space. Using the discrete form of the Ga-
bor transform or the wavelet transform results in a discrete-
parameter correlator structure. It is shown that the use
of the wavelet transform for the detection of signals in the
presence of 1/f noise results in a structurally simple form
for the correlation receiver.

[. INTRODUCTION

There has been a recent explosion of interest in the Ga-
bor transform and the wavelet transform for signal analysis
in the time-frequency domain. These transforms arise from
the theory of group representations [1] and are just two ex-
amples of a class of transforms we will call group transforms.

Because the Gabor and wavelet transforms offer many
advantages over classical Fourier analysis, their application
to signal processing problems is of interest. One such area
is the detection of signals in noise. The Gabor transform
has been shown to be useful for detecting transient signals
in the presence of white noise [2]. A weighted correlation
is performed between the Gabor coefficients of the received

signal and the Gabor coefficients of a reference signal; the’

weighting matrix is the correlation matrix of the Gabor co-
efficients of the white noise. We extend these results to the
case of nonstationary noise. Although the use of the wavelet
transform for the detection of signals is mentioned in [2], no
formulation is given. However, the wavelet transform has
been used for the detection of signals [3], but this approach
does not use a correlator structure. Instead, the presence of
a signal is determined by searching for characteristic peaks
in the wavelet transform of the received signal. We de-
velop a wavelet-based correlation detector and demonstrate
its usefulness.

The Gabor and wavelet transforms have a clear link to
the theory of reproducing kernel Hilbert space (RKHS). In
general, the range space of a group transform is an RKHS
[1). Since the solution to the detection problem can be sim-
ply expressed in terms of the inner product of an RKHS [4],
[5], the link between group transforms and RKHSs can be
exploited for the detection of signals in nonstationary noise.
This results in a general method for which the result of [2]
is a special case.

II. RKHS BACKGROUND

Roughly, an RKHS is a Hilbert space that contains an
element that plays the role of the Dirac delta “function”.
Specifically, let H(K) be a Hilbert space of functions defined
on an arbitrary set I; H(K) is called an RKHS if there
is a function K(-,-) defined on I x I such that, for each
tel, K(-,t) € H(K) and < fLK(,t) >H(K)=f(t),Vf€
H(K). The function K(-,-) is called the reproducing kernel
of H(K). It is well-known that to each covariance kernel
K({(-,") there corresponds a unique RKHS H(K) for which
K(-,-) is the reproducing kernel [4].

The signal detection problem requires a decision to be
made between the two hypotheses

Hy: r(t) = A(t)+n(),
Ho: r(t) = n(t), (1)

where r(t) is the received signal observed over the bounded
interval I, 4(t) is the Gaussian signal to be detected, and
n(t) is a zero-mean Gaussian noise with covariance kernel
K(t,3) that is square-integrable on I x I.

The classical solution consists of comparing a sufficient
statistic A to a threshold. The sufficient statistic can be ex-
pressed as A =< r,hr >pg(x) where h is the unique causal
operator that is the solution of an RKHS Wiener-Hopf equa-
tion [5]. That is, the function hr is an estimate of the
signal v, making this formulation a generalization of the
estimator-correlator. If 4(t) in (1) is a known deterministic
signal, then the estimator-correlator reduces to the correla-
tor A =< r,7 >uk) [4]. Because of the similarity of the
inner product structure between this case and the stochas-
tic case, there is no loss of generality to consider only the
deterministic case in the remainder of the paper.
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III. DETECTION USING GROUP TRANSFORMS

In this section we: define group transforms and develop
& group transform-based correlation detector.

Let G be a group with group operation *. A unitary
representation U of G on a Hilbert space H is a mapping
assigning to each z € G a unitary operator U, : H — H,
such that for any 2,y € G, Upwy = LU,

Given a unitary representation Uf of G, the associated
group: transform is an operator U defined on the Hilbert
space: H as follows: for f € H,

(Wf)(z)

where z ranges over G, and a fixed nonzero ¢ € H is chosen
such that (i} g is admissible, that is,

=< fU.g>g,

L @)@ P dute) < oo,

where u(z} is the left Haar measure on G, and (ii) ¢ is eyclic,
that is, Uf)(z) = 0,Yz € Giff f = 0[6]. We shall call such
a ¢ an analyzing function. The representation U is said to
be square-integrable if every nonzero ¢ € H is cyclic, and if
there exists at least one nonzero admissible function.

For signal processing applications, H is usually taken to
be L*(R), and

Use)= [ {0 Tgla, @

where the overbar denotes complex conjugation. Then U
maps L*(R) into L*(G,dp) and its range R() is itself an
RKHS with reproducing kernel

K(z,y) =< Uz, Upg >pa,

where z,y € G [1]. This can be thought of as
Kez.y) = [t fEiG =1 | . @

where the subscripts “s” and “y™ denote “operation on §(s—
t) as a function of s and evaluation of the resulting function
at y" (likewise for “¢™ and “z™).

Since H{K} C L*(R) it is possible to use (2} to map the
HS H(K) info another RKHS as follows. Following the
lead of (3), define the new reproducing kernel to be

Kiz,y)= [Ug . (4)

It iy shown in [7} that & : H(K) — H(K) is isometric.
Therefore, the sufficient statistic can be expressed as

A=<Urly >y - (5}

Note that K(z,y) as given in (4) can be interpreted as the
covariance of the group transform of the noise process. Thus
we: see that the sufficient statistic can be formulated as a
correlator in the new space H(K }: an RKHS correlation is

performed between the transform Ur of the received signal
and the transform I of the signal +.

The complexity of the computation of (5} depends on the
structure of the reproducing kernel K{-,-J. As seen in (4),
the choice of the group: transform determines this structure.
The usefulness of (5} will be illustrated in the next section;,
but first we introduce two group transforms that are gaining
much attention from the signal processing community.

The Weyl-Heisenberg group H gives rise to the Gaber
transform. The corresponding unitary representation Uy on
L*(R) is defined by

Un(w, ) g(t) = & gt — 7).
Any function ¢ € L*(R} is a Weyl-Heisenberg analyzing
function; therefore, Uy is a square-integrable representation
on L*R). The Gabor transform of a finite-energy signal f
is then

Cfwry= [ fygtt-ryeisa, ()

and, if we normalize g such that || g||*>= I, is an isometry

from L*(R) into L*(R?) [6].

Similarly, the wavelet transform is associated with the
affine group A for which the unitary representation Uy on
L*(R) is defined as

Uals, ) g(t) = e glest — 1)
for 5,7 € R. The wavelet transform of f € L*(R) is then
Wits,ry= [ fyel st M

where the analyzing function ¢ € L*(R) has Fourier trans-
form: satisfying

12 -

YOy le}|‘" ©

Functions satisfying (8) are admissible and those satisfying
(9) are cyclic [6]. Without loss of generality, we shall nor-
malize g such that ¢, = I so that the wavelet transform js
an isometry into LA(R?).

There is redundancy in each of these representations;
therefore, equivalent discrete versions arise by appropriately
sampling (6) and (7). The discrete Gabor transform of a
finite-energy signal f is

G f(m,n) = / F(t) gt —nT) e gt
00
By proper choice of the function ¢ and the sampling pa-
rameters (@, T), the discrete Gabor transform can be made
into an isometry [8]. The discrete wavelet transform of a
finite-energy signal f is
" o0 9 9 9 .
W f(m,n) = / JE)S™ g(S™t — nT)dt.

When no confusion can arise we write W f(m,n) as W,,. It
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is possible to choose g and the sampling parameters (S,T)
such that the discrete wavelet transform is an isometry (8].

The use of the discrete Gabor transform in (4) and (5)
generalizes the result of [2] where the Gabor transform was
used to detect overlapping transients in white noise. The
wavelet transform is used to advantage in the next section.

IV. APPLICATION OF THE WAVELET TRANSFORM

In this section we give two examples that demonstrate
the usefulness of the wavelet transform for signal detection.

Example 1: Fractional Brownian Motion
A fractional Brownian motion has a covariance given by

Ki(t,r) = Vi (|7 + |77 = |t =7 ],

where Vy is a constant depending on a parameter H € (0,1)
[9]. We apply (4) to this covariance using an alternative
form of the wavelet transform given by

Wis,r) =7 [~ f)g((t =)/t

An easy generalization of the result in {9] shows the new
reproducing kernel to be

f(y(s', 'i8,7) =
/°° /°° lv = sAPH Gv, A\, s's 7' — 1) dv dA,
where
Glw A 87"~ 1) & Vig (s/8) 2 g((v = (v = 7))/8') g(N).

Thus, I.{H(s', 1';s,7) depends on 7'—7. This shows that the
wavelet transform of fractional Brownian motion is station-
ary in the time variable and makes the wavelet transform
a particularly effective group transform for detection in the
presence of fractional Brownian motion.

Although this result is interesting, a more useful result
is given in the next example.

Example 2: Nearly 1/f Noise
Consider the nonstationary noise n(t) defined {10] by the
discrete wavelet expansion

Tl(t) = ZZWmngmn(t)a (10)

where W,,,, are the random wavelet coefficients of the dis-
crete wavelet transform, and {gmn(t)} is an orthonormal
wavelet basis related to the mother wavelet g(t) according
to

gmn(t) = 2™ g(2™t — n). (11)

Let the Fourier transform G(w) of g be continuous at w =0
and let | G(w) | decay at least as fast as 1/w. Let the random
sequence Wy, be such that for arbitrary distinct pairs m'
and m, Wy, and W, are uncorrelated sequences, and, for
each fixed m, let the sequence Wy, be white with average
power 2™ g2, Then n(t) is a nearly 1/f noise [10], i.e., it

has measured spectra satisfying

k1 k’l

TW—IE S S(w) S lwlpv

with 0 < k; < k; < 00, and f € (0,2) a fixed parameter;
this includes 1/f noise as a special case.

If the discrete form of the wavelet transform given in (10)
and (11) is used for the detection of signals in the presence
of nearly 1/f noise, then the reproducing kernel of (4) has
the simple form :

E{Wna} E{Wom}, m#m!

9-Pm 52 6,.',u,

K(m,n;m’,n") = { ,
m=m'

If the noise has zero mean then the mean of W, is also

zero and we get the particularly simple form

E(m,n;m',n') = 27°™ 0% 6, b mr. (12)

In practice it is necessary to limit the number of wavelet
coefficients used to a finite number; we therefore consider
o~n1y the range M; < m < M and N; < n < Ny, Then
K~Y(m,n;m',n’) exists, and the wavelet-based correlator is

My N, My Np [
A= Z E Wr(m,n) Z Z K7, k;m,n)Wa(j, k).
m=M; n=N; =M k=N,

Using (12), we can write this in a simpler form

Ma N
Z 2™ fa? S Wr(m,n)Wx(m,n)

A =
m=M, n=N,
a &
= E (2”"‘/0’2) Am.
m=M,;

This has a nice interpretation. At each scale m we form the
statistic A, by correlating Wr(m,n) and Wx(m,n) as if
making a decision in unity variance white noise. The suffi-
cient statistic A is then formed by fusing these “white-noise
statistics” together via a linear combination with weights

26m /42,

V. CONCLUSION

We have shown that group transforms, such as the Ga-
bor and wavelet transforms, can be used to transform the
detection problem into an RKHS. The inner product of this
RKHS can be used to express the sufficient statistic A, and
can be interpreted as a correlator. In so doing, we have
shown how to use the Gabor and wavelet transforms in the
nonstationary noise case. An important advantage of this
approach is that each of these transforms has an equiva-
lent discrete version, which results in a discrete-parameter
weighted correlator well-suited to implementation.

The use of the wavelet transform for detection was illus-
trated using two examples: (i) fractional Brownian Motion,
and (ii) nearly 1/f. For the latter case, the particularly
simple form of the transformed reproducing kernel allowed
the sufficient statistic to be formed using a linear combina-
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tion of statistics computed at each scale as if the noise were
white.
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