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I. Introduction 

 The location of a source can be determined from signals intercepted at several sensors.  One of the most ef-

fective methods is to use estimates of the time-difference-of-arrival (TDOA) and/or the frequency-

difference-of-arrival (FDOA) between pairs of signals received at the sensors.   This involves a se-

quence of two estimation problems: (i) processing the signals to give a set of TDOA/FDOA estimates 

(e.g.,  [1],  [3],  [4],  [5],  [6],  [7],  [8],  [10],  [12],  [13],  [14] ), and (ii) processing the resulting 

TDOA/FDOA estimates to estimate the location (e.g.,  [2],  [9],  [11]).   

Optimal processing for the second stage requires an understanding of the probabilistic characteris-

tics of the TDOA/FDOA estimates from the first stage.  Therefore, much work has been done to de-

rive optimal TDOA/FDOA estimates and to characterize their covariance matrix.  However, as this 

correspondence will point out, when using results from the many papers on TDOA/FDOA estimation 

it is important to understand the differences that arise due to the different signal models that have been 

used.   TDOA/FDOA results were first developed in the early 1970s for the case of passively locating 

underwater acoustic sources, where the accepted model for the signal is a WSS random process (al-

most always assumed Gaussian)  [1],  [3],  [4],  [5],  [6],  [8],  [10],  [12].  Only later was TDOA/FDOA-

based location considered for the case of passively locating electromagnetic sources  [7],  [9],  [11], 

 [14].  For electromagnetic sources such as radar and communication transmitters, a stationary random 

process is generally deemed inappropriate and a deterministic signal model may be better  [14].  Stein 

 [14] considers the development of the ML estimator for the deterministic case (but did not develop the 

Cramer-Rao bound for that case) and Quazi  [6] briefly addresses the deterministic vs. random signal 

differences but only in the context between active vs. passive location systems (he does not mention 

differences between passive systems for the acoustic and electromagnetic scenarios).  In general, there 
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seems to be confusion and unawareness about the differences between the passive acoustic case and 

the passive electromagnetic case1.  For example, many times acoustic-signal results have been mis-

used in the electromagnetic scenario; this seems to occur more often than the reverse –likely due to 

the fact that the acoustic setting was the first explored and has generated many widely-known publica-

tions. 

Section II discusses the differences between the signal models and explores the impact these dif-

ferences have on the underlying PDF, the Fisher information matrix (FIM), the Cramer-Rao Bound 

(CRB), and the maximum likelihood estimator (MLE).  The Appendix derives specific results for 

evaluating the FIM for the electromagnetic scenario. 

II. Impact of Signal Model on TDOA/FDOA Estimation Results 

A.  Signal Models 

The model for two sampled passively-received complex baseband signals at two sensors is given by 
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where s(t) is the complex envelope of the continuous-time transmitted signal, T is the sampling interval, the 

wi[n] are corrupting noises, τ1 and τ2  are delays, and ν1 and ν2 are Doppler shifts.  It should be mentioned that 

for electromagnetic signals it is usually appropriate to use Doppler shift to model the effect of motion between 

source and receiver, but for acoustic signals it is often not appropriate to use Doppler shift; however, to allow 

easier focus on the statistical model differences we assume here that this is valid.  The TDOA Δτ = τ1 – τ2 and 

the FDOA Δν = ν1 – ν2 are the parameters to be estimated from time-domain samples of these signals; we define 

. For both the acoustic scenario and the electromagnetic scenario, the accepted modeling as-[ T
vτ= Δ Δθ

 
1 We use the terms “acoustic” and “electromagnetic” as merely convenient labels that arise from the historical develop-
ment of TDOA/FDOA results; it is of course possible to have an acoustic signal that is better modeled as deterministic or 
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sumptions for the noises wi[n] are (i) they are zero-mean WSS random processes, (ii) they are each Gaussian, 

and (iii) they are independent of each other.  In general they are not necessarily assumed to be white, but that is 

a common assumption.  For notational purposes: (i) the signal [ ] ( ) ijv nT
i is n s nT eτ= − , (ii) the vector ri is the 

vector with elements that are the values of ri[n], and (iii) the vector r is 1 2

TT T⎡ ⎤= ⎣ ⎦r r r ; the vector s is defined 

as , where we explicitly notate the dependence on the TDOA/FDOA parameter vector θ. 1 2

TT T⎡= ⎣θs s s ⎤⎦

                                                                                                                                                                     

This much is common between the acoustic and electromagnetic scenarios.  The differences arise in what is 

assumed about the signal si[n].  For the acoustic scenario the accepted modeling assumptions on the signal si[n] 

are: (i) it is a zero-mean WSS random process, (ii) it is Gaussian, (iii) it is independent of each noise process, 

and (iv) it need not be assumed white, although that is a special case that is often considered.  This random-

signal model arose due to the fact that the early TDOA/FDOA researchers were investigating passive sonar, 

where the acoustic signals were made by the motors of ocean vehicles.  For this scenario: (i) the WSS random 

process assumption is consistent with the erratic nature of the motor sounds, (ii) the Gaussian assumption is 

motivated by (perhaps) the central limit theorem and (certainly) the tractability it provides, and (iii) the inde-

pendence of signal and the noises is reasonable based on physical considerations. 

There are very few published fundamental results on TDOA/FDOA estimation for electromagnetic signals 

(e.g.,  [7],  [14]).  Signals emitted by electromagnetic sources tend to have much more regular structure than the 

erratic variations seen in acoustic signals made by ocean vehicles; therefore they don’t readily evoke the notion 

of random process.  Still, a classic example of a WSS random process is a sinusoidal signal with uniformly dis-

tributed phase; despite the fact that each realization of this process exhibits very regular structure it is a WSS 

random process.  Similarly, radar pulse trains can be viewed as random processes for the very same reason: 

they can be modeled as having random transmission parameters (e.g., random time offset, random phase offset, 

etc.).  However, such signals – with their widely spaced pulses – can hardly be thought to be WSS processes 

(e.g., variance within a pulse is not equal to the variance between pulses).  Furthermore, they certainly cannot 

 
to have an electromagnetic signal better modeled as random. 
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be modeled as Gaussian, and finding some other suitable probability model seems daunting and is generally 

fruitless when one tries to solve problems using such a probability model.  Similar arguments could be made for 

many other types of electromagnetic transmitted signals, though not for all.  Thus, in such a scenario it is pru-

dent to consider the signal si[n] to be a deterministic signal rather than a random signal  [14]. 

When we consider the estimates of TDOA and FDOA,  and , we typically wish to find unbiased es-

timates that minimize 

τΔ̂ vΔ̂

( ){ }2ˆE τ τΔ − Δ  and ( ){ }2ˆ
v vE Δ − Δ .  Here is an immediate fundamental distinction be-

tween these two models: it needs to be understood that when the signal is random these expectations are taken 

over the combined ensemble of signal and noise whereas when the signal is deterministic these expectations are 

taken over only the noise ensemble.  Thus, when the signal is random we are finding the average squared error 

over all possible noises and signals (within the ensemble); when the signal is deterministic we are finding the 

average squared error over all possible noises for one specific signal.  Furthermore, in simulations for the ran-

dom signal case, in each Monte Carlo run the signal is selected from its ensemble and the noise is selected from 

its ensemble; whereas for the deterministic signal case the same signal is used in every Monte Carlo run.  

B.  PDFs Under the Signal Models 

Despite these differences, from the above discussion we see that for both models the received data vector r 

is Gaussian and has a Gaussian PDF.  The key distinction between these two scenarios that drives all the differ-

ences in the FIM, the CRB, and the MLE processing is the manner in which the TDOA/FDOA impacts the pa-

rameters of the Gaussian PDF of data vector r.  For the case of the acoustic scenario, the mean of r is zero and 

the covariance matrix of r depends on TDOA/FDOA, so we denote it as to show that dependence.  In con-

trast, for the case of the electromagnetic scenario, the mean of r is 

θC

1 2

TT T⎡ ⎤= ⎣ ⎦θs s s which depends on 

TDOA/FDOA and the covariance matrix of r is a block diagonal matrix of the two individual noise covariance 

matrices, and therefore does not depend on TDOA/FDOA so we denote it as C in this case.  From this single 

distinction we see that the PDF for the acoustic case is 
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( ) { 11( ; ) exp
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H
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π

−= − θ
θ

r θ r C r
C }  (2) 

and the PDF for the electromagnetic case is 

 
( ) { 11( ; ) exp ( ) (

det
H

emp
π

−= − − θr θ r s C r s
C })− θ . (3) 

The differences between the PDFs for these two signal model scenarios is clearly evident in (2) and (3); it is 

this difference that leads to significant differences in the structures of Cramer-Rao bounds as well as the maxi-

mum likelihood estimators for the two cases.  It should be observed that these are each a special case of the 

complex general Gaussian case (see Ch. 15 of  [15] for the complex data case covered here) given by  

 
( ) { 11( ; ) exp ( ) (

det
H

ggp
π

−= − − θ θ θ
θ

r θ r μ C r μ
C })− . (4) 

where both the mean θμ and the covariance of r depend on the parameter vector θ. θC

C.  Fisher Information and Cramer-Rao Bound 

The elements of the Fisher information matrix Jgg for the complex general Gaussian scenario PDF in (4) is 

a standard result  [15] given by  

 1 1[ ] 2 Re ( ) tr
H

gg ij
i j i

J 1

jθ θ θ
− −

⎛ ⎞

θ
−

⎡ ⎤ ⎛⎡ ⎤∂ ∂ ∂⎜ ⎟= + ⎜⎢ ⎥⎢ ⎥ ⎜⎜ ⎟∂ ∂ ∂⎢ ⎥⎣ ⎦

⎞∂
⎟⎟∂⎣ ⎦ ⎝⎝ ⎠

θ θ θ
θ θ

μ μ C CC θ C C
⎠

θ . (5) 

Notice that there are two terms in this result: one that depends on the sensitivity of the mean to the parameters 

and one that depends on the sensitivity of the covariance to the parameters.  Because the acoustic and electro-

magnetic scenarios are two different special cases of the generalized Gaussian scenario, we can use the result in 

(5) to find the result for each of these two special cases. 

As discussed above, for the acoustic scenario the mean of r is zero and therefore does not depend on the pa-

rameter vector; thus the first term in (5) is zero and the Fisher information matrix Jac for the acoustic scenario is 

then given by   
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 [ ] 1 1trac ij
i jθ θ

− −
⎡ ⎤∂ ∂

= ⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

θ
θ θ

C CJ C C θ , (6) 

which gives a result that is well known in the TDOA/FDOA literature for the acoustic signal scenario (e.g.,  [8], 

 [10]).  The corresponding CRBs are found by inverting the respective FIM; doing that directly is difficult but 

equivalent approaches that avoid direct use of (6) have been found (see for example  [10]).  

For the electromagnetic scenario the covariance of r doesn’t depend on the parameter vector; thus, the sec-

ond term in (5) is zero and the Fisher information matrix Jem for the electromagnetic scenario is thus given by   

 [ ] 12 Re
H

em ij
i jθ θ

−
⎧ ⎫∂ ∂⎪ ⎪= ⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭

θs sJ C θ , (7) 

which surprisingly is not widely seen in the TDOA/FDOA literature for the electromagnetic signal scenario.  

See the Appendix for details of evaluating this form to compute the FIM for TDOA/FDOA under the determi-

nistic signal case.  The corresponding CRBs are found by inverting the respective FIM; doing that using (7) 

leads to forms that are similar but not identical to those given without proof in  [7] for the continuous-time case. 

Comparing (6) and (7) we see that there is a significant difference between the structures of the FIM for the 

two cases.  In particular, for the acoustic scenario it is convenient to use “Whittle’s Theorem” to write the 

Fisher information for a WSS process in the spectral domain  [12]; however, this alternative approach for the 

WSS-signal case can not be used for the electromagnetic scenario.  An even more important distinction is as 

follows.  As pointed out in several publications (e.g.,  [8],  [10],  [12]) the off-diagonal elements of the acoustic 

scenario FIM in (6) are zero under the mild assumption of a large time-bandwidth product, thus indicating that 

for the acoustic scenario the optimal estimate of TDOA should be uncorrelated with the optimal estimate of 

FDOA.  However, the electromagnetic scenario FIM in (7) does not, in general, yield this uncorrelated 

TDOA/FDOA condition.  For example, the Appendix shows that for the case of white noise the result in (7) 

gives the off-diagonal FI element as 

 [ ] * *
1 1 212 2 2

1 2

1 12 Re ( ) ( ) ( ) ( )em
n n

jnTs nT s nT jnTs nT s nTτ τ τ τ
σ σ

⎧ ⎫⎪ ⎪′= − − − + − − −⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑J 2′ , (8) 
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where ( )s t′ is the derivative of s(t).  From this result we see that the off-diagonal element in general is not zero; 

as an illustration, the linear chirp signal has been shown to have non-zero cross-FI  [16].  Thus, for the acoustic 

case we can expect that for a pair of sensors the optimal TDOA estimate is uncorrelated from the optimal 

FDOA estimate but that should not be expected in the electromagnetic case. 

An important impact of this comes when assessing the location accuracy that can be achieved from a set of 

TDOA/FDOA measurements.  Assuming an ML estimator for the TDOA/FDOA values, their estimates can be 

taken to be Gaussian and then the CRB on the location estimate covariance becomes 

 1( T
loc )−=C G JG  (9) 

where J is the FIM for all N TDOA/FDOA measurements and G is the Jacobian of the TDOA/FDOA values 

with respect to the emitter’s location coordinates  [11],  [17].  From (9) it is clear that when performing studies 

of location accuracy, using the incorrect FIM for TDOA/FDOA  – i.e., using the acoustic FIM when the elec-

tromagnetic FIM should be used, or vice versa – can lead to incorrect conclusions about location accuracy. 

D.  Maximum Likelihood Estimator 

The ML estimator is found by maximizing the log likelihood function (LLF), which is typically expressed 

by taking partial derivatives of the LLF with respect to each parameter and setting them equal to zero.   For the 

complex generalized Gaussian case there is a standard result (see Sect. 15.7 of  [15]) given by  

 
{ } [ ] [ ] [ ]1 1 1ln ( ; )

tr 2 Re H Hgg

i i i i

p
θ θ θ θ

− − −
∂ ⎧ ⎫⎛ ⎞∂ ∂ ∂

= − + − + − −⎨ ⎬⎜ ⎟∂ ∂ ∂ ∂⎩ ⎭⎝ ⎠
θ θ

θ θ θ θ θ

r θ C μ CC r μ C r μ C C r μ1−θ
θ θ .  (10) 

Notice that there are three terms in this result: one that depends on the sensitivity of the mean to the parameters 

and two that depend on the sensitivity of the covariance to the parameters.  Because the acoustic and electro-

magnetic scenarios are two different special cases of the generalized Gaussian scenario, we can use the result in 

(10) to find the result for each of these two special cases. 

For the acoustic scenario the mean of r is zero and therefore does not depend on the parameter vector; thus, 

the partial derivatives of the LLF for (2) are given by just two terms from (10): 
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This result is well known in the passive sonar literature (e.g., see  [8], [10]).  In  [10] it is further stated that for 

the TDOA/FDOA case the determinant term in the first line of (11) does not depend on the parameter vector; 

therefore, the first term in the second line of (11) can be ignored to give  

 1( ; ) Hac

i i

p
θ θ
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=

∂ ∂
θ

θ
r θ Cr C C r1−

θ . (12) 

It should be noted that finding the value of θ that drives (12) to zero is equivalent to 

 { }1
,

ˆ arg max H
ML ac

−= − θ
θ

θ r C r  (13) 

For the electromagnetic scenario the covariance of r does not depend on the parameter vector; thus, the partial 

derivatives of the LLF for (3) are given by the second term in (10) 
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It should be noted that finding the value of θ that drives (14) to zero is equivalent to 
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Comparing (12) and (13) to (14) and (15) shows that we should expect fundamental differences between 

the MLE for the acoustic and electromagnetic cases.  Surprisingly though, each case results in a structure that 

involves pre-filtering the received signals followed by cross-correlation (see  [3],  [10] for the acoustic case and 

 [14] for the electromagnetic case).  However, although both cases share this generalized correlator structure, the 

pre-filtering needed for each case is quite different.  For the acoustic case the filters depend on an interplay be-

tween the signal PSD and the noise PSD  [3],  [10], whereas for the electromagnetic case the filters depend only 

on the noise PSD and not on the signal’s spectral structure  [14].  As a result, the acoustic generalized correlator 
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simplifies to a standard correlator only when noise and signal are white  [3],  [5] whereas the electromagnetic 

generalized correlator simplifies to a standard correlator whenever the noise is white, regardless of the signal’s 

spectral structure  [14].  Despite this difference in ML structure for the two scenarios there are many cases in the 

literature that address the electromagnetic case but reference (and sometimes use) the acoustic scenario’s gener-

alized correlator when it is not appropriate. 

Another interesting difference between the two scenarios is pointed out by Stein  [14].  For the deterministic 

signal, the MLE involves estimating the unknown deterministic signal.  It is clear from (15) that this step is 

necessary since the maximization in (15) involves the unknown signal vector sθ.  The development of the MLE 

for this scenario naturally includes the estimation of the underlying signal as an intrinsic part of the processing. 

Weinstein  [8] explored the losses that arise when the ML estimator for TDOA/FDOA is done on a decen-

tralized pairwise basis rather than using all received signals in a centralized processor to jointly estimate all 

TDOA/FDOA values.  Although Weinstein does not explicitly state that he considers only the passive acoustic 

scenario nor does he state that the signal is modeled as a WSS Gaussian process, the PDF that he uses is given 

by (2) and not by (3) and therefore all the results in  [8] are applicable to the acoustic scenario but not to the 

electromagnetic scenario.  It is not clear that Weinstein’s general insights for the near equivalence of decentral-

ized and centralized processing when the SNR is high carries over to the electromagnetic case; the decentralized 

vs. centralized analysis for the electromagnetic case is more complicated than for the acoustic case and does not 

seem to lead to easily generalized results. 

III. Conclusions 
The signal models for these two cases (passive acoustic and passive electromagnetic) may seem to be the 

same at a casual look (i.e., the equations in (1) are used in each case) but the underlying assumption about the 

signal (i.e., WSS Gaussian signal for the passive acoustic case and a deterministic signal for the passive elec-

tromagnetic case) leads to important differences in the results for the FIM, CRB, and MLE.  The main differ-

ences are that: (i) the general structures of the FIM and CRB are significantly different; (ii) a key specific dif-

ference in the FIM/CRB structure is that unlike in the acoustic case, for the electromagnetic case the FDOA and 
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TDOA estimates of a signal pair are likely to be correlated;  (iii) for the electromagnetic case the MLE is an 

unfiltered cross-correlator whenever the noise is white (the acoustic case requires the signal to be white in order 

to remove the filters).  Ignoring these differences can lead to incorrect location accuracy assessments as well as 

improper choices when developing processing schemes. 

Appendix: Derivation of FIM for Deterministic Signal Case 

To evaluate the FIM in (7) for the deterministic-signal TDOA/FDOA case we need partial derivatives of 

the signal vector .  Using the signal model in 1 2

TT T⎡= ⎣θs s s ⎤⎦ (1) we get 
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where  is the vector of samples of the time-derivative of the received signal; we have used the chain rule here 

and the fact that  

i′s

( ) / ( ) /
i

i i t nT
s nT ds t dt

τ
τ τ

= −
∂ − ∂ = − .  Similarly we have 

 

1 1

11

2 2 2

2

v

v

v

v

v

∂ ∂⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎡ ⎤∂Δ ∂∂ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂Δ ∂ ∂ −⎣ ⎦−⎢ ⎥ ⎢ ⎥
∂Δ ∂⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

θ

s s
ss

s s s
 (17) 

where  is the vector with elements that are the elements of multiplied by the corresponding  jnT with n run-

ning sequentially over its range.  Using these results in 

is is

(7) gives 
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where Ci is the covariance of the ith noise process.   For white noise with noise variances of 2
iσ we get 

 [ ] 2
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1 2

2 2( ) (em
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σ σ

′ ′= − + −∑ ∑J 2
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Note that in the [Jem]22 element for the FDOA the signal samples are quadratically weighted by time.  A dual 

result for the [Jem]11 element for the TDOA can be developed where the signal’s DFT values are quadratically 

weighted by frequency; this can be obtained from (21) by using Parseval’s theorem and properties of Fourier 

transforms or can be obtained by using a frequency domain formulation of the signal data as is done in  [18].  

These quadratically weighted relationships are similar to such weightings shown in the CRB results for the con-

tinuous-time case stated in  [7] without proof.  
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