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ABSTRACT 

Classical results from group representation theory are used to 
gain insight into important properties of narrowband and wideband 
ambiguiry functions and wavelet transforms. Wideband ambiguity 
functions arc essentially affine wavelet transforms and narrowband 
ambiguity functions can be considered to be Heisenberg wavelet trans- 
forms. Important invariance properties of the ambiguity functions are 
consequences of tlie group representation theory. This paper presents 
examplcs of dcrivations of wideband ambiguity function properties. 

_I____ INTRODUCTION 

There has h e n  a recent explosion of research interest in con- 
tinuous and discrete wavelet transforms 11, 2, 3, 4, 5, 6, 71. The 
wavclet transforms can be considered to be time-frequency localiza- 
tion operators that treat the time-frequency plane (phase space or in 
terms of Galaor, the information plane) as one geometric whole rather 
than as two scparate spaces IS]. Localization of signals in the time x 
frequency plane is the essence of the signal ambiguity function prob- 
lem. In the case of narrowband ambiguity functions, one computes 
the inner product of a rcccived signal with a time delayed and Doppler 
:shifted version of the reference signal g( t ) .  

AI1 the time delayed and Doppler shifted signals can be obtained 
from the elementary signal g ( t )  by a unitary operator that represents a 
Heisenberg group clement. Thus, the narrowband ambiguity function 
can be interpreted as the generalized Gabor transform of the received 
signal with respcct to the reference signal g ( t ) .  

Gabor originally iised g ( t )  = e-"' because it has the minimum 
possible product of m s  duration and bandwidth 191. For this reason 
also, Cabor transforms have fundamcnial significance in physics and 
information theory. Later, Montgomcry and Reed [lo] showed that the 
Gabor transform is well defincd for any reference signal g( t )  E LZ(R); 
this result is easily vcrified using the theory of group representations 
[I] .  To emphasix the connection to the Heisenbcrg group, we will 
refer to the Gabor transform as the Heisenberg wavekt  tran$orm. 

In h e  case of wideband ambiguity functions, one computes the 
inner product of a rcccived signal with a time delayed and dilated 
vcrsion of the reference signal g(t) .  These time delayed and dilated 
signak can be obtained from g( t )  by a unitary opera!or that represents 
an affine group element. Hence wideband cross-ambiguity functions 

are ujjine wavelet transforms. Auto-ambiguity functions are specid 
cases of cross-ambiguity functions. 

Group representation theory provides a unified framework for 
the study of narrowband and wideband ambiguity functions, as well 
as Heisenberg and affine wavelet transforms. The important concept 
is that both narrowband and wideband ambiguity functions are coeffi- 
cients of the unitary representations of their respective groups. Various 
wcll known invariance properties of narrowband and wideband ambi- 
guity functions follow easily from this fact. We demonstrate the latter 
by several examples. 

Group representation theory also helps to explain the essential 
differences between narrowband and wideband ambiguity functions 
and related wavelet transforms. In particular it gives us new insight 
into the ambiguity volume conservation and admissible si.gnals. Am- 
biguity volume conservation is a property of practical significance for 
the synthesis of realizable signals with desired ambiguity properties. 

The objective of this article, an up-dated version of our earlier 
paper 1211, is to provide a unified group theoretic treatment of ambigu- 
ity functions and wavelet theory. Additional results that are presented 
here are group theoretic derivations of ambiguity function invariance 
properties. 

The work makes use of the results of considerable recent liter- 
ature on this topic 11, 2, 3, 4, 5 ,  6 ,  71. Heil and Walnut [I], for 
instance, present a good up-to-date overview of wavelet transform re- 
search in a paper highly recommended to readers interested in this 
fascinating topic. Group theoretic aspects of narrowband ambiguity 
fmctions have been investigated also by Auslander and Tolimieri [ 111 
and by Schempp [12, 13, 141. Our discussion emphasizes the con- 
nection between affine wavelet transforms and wideband ambiguity 
functions, with the key integral formulas to be discussed in this paper 
being: 

Narrowband Ambiguity Function: 

Wideband Ambiguity Function: 

W ( f ,  g; s, T )  = c 1 ' 2  f ( t ) [ g ( s t  + T) ] *d t  L 
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SOME MATHEMATICAL BACKGROUND 

Basic knowledge of group theory as presented in 1151, and knowl- 
edge of Bilberi space in [16] and [17] will be assumed. However, the 
definition of a group will be reviewed. 

A group G is a set G with a map * : G x G --+ G denoted by 
(z, y) w z * y having the following properties: 

1. Closure: 2 * y E G for all  z, y E G. 

2. Associativity: (z * y) * z = z * (y * 2). 
3. There is an element e E G, to be called the identity, such that 

e *  z = z * e = z for all z E G. 

4. For each z E G, there is an element, z-’, to be called the inverse 
of z such that: x * z-’ = z-’ * x = e. 

If in addition, z * y = y * z for all z, y E 6, the group is said to 
be commutative. 

Whcn the operation * is totally clear, the symbol * will be omit- 
ted: zy instead of z * y. 

A subset S of group G is a subgroup of G if it is a group under 
the same operation as G. 

The group G may have additional structure. For instance, if G is 
a topological space and * is continuous with respect to this topology, 
G will be a topological group. Furthermore, if G has a differentiable 
structure, G will be a differentiable manifold, and called a Lie Group. 

A differentiable manifold for our purpose is a set which “looks 
like” Euclidean space. For example, Rn is one since it is Euclidean 
space. On Euclidean spacc, we can choose different parametrizations; 
however, the change of cotirdinates must be differentiable. Rectan- 
gular coordinates and polar coardinates are familiar examples of such 
parametrizations of R2. We recall that change of coordinates must 
also be invertibl e locally, that is, that the Jacobian of the transforma- 
tion be invertible. 

Tracre is a vast amount of theory of Lie groups. For purposes of 
this paper, we will concentrate on a special category of groups called 
the linear groups. These are groups which can be realized as groups 
o f  linear transformations of a vector space, or equivalently, as matrix 
groups. 

The sct GZ(n,R) of invertible matrices with real coefficients 
form a group called the real general linear group, under the usual 
matrix multiplication. Indeed, the set Gl(n, R) may be parametrized 
using n2 coordinate functions, by fixing a basis in an. Thus Gl(n, R) 
“looks like” R”’. 

It is a fact that every group of invertible linear transformations 
of a rcal n-dimewional vcctor space may be seen as a subgroup of 
Gl(n, R). 

The subgroup of GE(2, E) consisting of matrices of the form 

with s > 0 and t any real number, is called the real afine group. 

element of GZ(2,R), and the inverse of an element is 
It will bc dcnoted by Al. 11s idcntity clement is the usual identity 

Another matrix group of particular interest to this paper is the 
so-called Heisenbeg group, 71, the group o f  matrices of the form 

It can be verified that the identity and inverse of this set belongs 
to 71, and that a parametrization of the Heisenberg group is the one 
that associates a matrix with its three superdiagonal entries. One sees, 
then, that H “looks like” R3. 

The set of operators on a Hilbert space that preserve its inner 
product forms a group under composition, called the Unztary Group 
of the Hilbert space involved. Specifically, L2(R) wdl be our H~lbcrt 
space under consideration. 

It is possible to define measures on topological groups and hence 
Lie giuups, such as the Heisenberg group and the affine group. These 
measures are compatible with the group structure in the sense that 
they remain unchanged if the set is translated by a multiplication by a 
group element. Since groups are not commutative in gcneral, there are 
b t h  left invariant and rlght invariant measures, If f is a measurable 
function on a group G, p is left-invariant, if 

for all 90 E G. The right invariant measure is defined similarly. If an 
invariant measure, left or right, exists for a group, it is well known 
that it must necessarily be unique up to multiplication by a constant. 
Finally, if the left and right invariant measure coincide, the group in 
question is said to be unimodular. 

An example of left invariant measure is the well known Lebesgue 
(or Riemann) measure. The group involved is the group of real num- 
bers under addition. Certainly, 

for all y E R. This group is unimodular since the real numbers are 
commutative under addition. 

A unitary representation U of a group G on a Hilbert spacc H is 
a mapp ing assigning to each group clcmcnt a unitary operator U(%) 
on H ,  such that for any z, y E G, 

U ( z  1; y) = U(z)oU(y). 

(Recall that U is a unitary operator on f1 if, for all v, w E H ,  (Vu, Uw)  
= ( v , w ) ) .  

A subspace S of H is invariant undc: U if for any v E S, U ( z ) .  
v E S for all z E G. A representation U is said to be irreducible if 
the only invariant subspaces of H are the 7ero subspace and H itself. 

An irreducible unitary representation U of a group G on a Hilbert 
space H is said to be square integrable if there is some g E H such 
that: 
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where p is the left invariant measure of G. Such a g is said to be an 
admissible vector. 

Square integrable representations enjoy the following property, 
described by a generalization of the Frobenius-Schur-Godement the- 
orem [13]: If U is a square integrable representation of a group G 
acting on a Hilbert space H ,  there exists a unique self-adjoint positive 
operator Q such that: 

i) The set of admissible vectors coincide with the domain of Q. 

ii) Let 91 and 92 be two admissible vectors. Let f1 and f2 be any 
vectors in H ,  thep 

1 ( f i , U ( z ) g d U 2 ,  u(z)g2)*& = (Qgz,Qgi)(fi ,f i) .  

Finally, if G is unimodular, then Q is a multiple of the identity 
operator; hence the domain of Q will be all of H ,  that is, all of H 
constitutes the set of admissible vectors for the representation. 

The above theorcm is proved in detail in [2]. It will play a major 
role in determining the volume under the ambiguity surface. 

The coefficient of a continuous unitary group representation U 
of G on a Hilbert space H with respect to the ordered pair (f, g), both 
f and g in H ,  is a mapping C U , ~ , ~  : G + R such that 

5 H (f, U(z)g). 

This coefficient is a generalization of the Fourier coefficients, 
and will be useful in rephrasing well known concepts later. 

on Lc2(R) : 
For notational convenience, we define the following operators 

- Translation: Tnf(z) = f (z - a) ,  a E R. 

- Dilation: D k f ( z )  = & f ( k z ) , k  > 0. 

- Modulation: Eaf(z) = eZrinzf(z), a E R. 
- Multiplication: fdnf (z)  = ~ ~ * ~ ~ f ( z ) ,  a E R. 

These operators are easily seen to be unitary. 

Further information conceming group representations may be 
found in 11 81. 

THE WIDE AND NARROW BAND AMBIGUITY FUNCTIONS 

It is the purpose of this section to show that the wide a7d nar- 
row band ambiguity functions are the coefficients of the affine and 
f-lciscnbcrg group respectively. This essentially is the vital connection 
between the functions and group theory. 

Consider the Heisenberg group, 71. It has a unitary representation 
U on L2(R) as follows: U ( z ,  y, z) is the unitary operator correspond- 
ing to (z, g,  z )  in H such that: 

That this unitary representation of ?I! is unique in a certain sense 
and irreducible is the content of' the Stone-Von Neuman Theorem 171. 

When we apply the definition of coefficient to U on L2(R)with 
respect to (f ,g),  we obtain 

CrJ,f,g = (f, U ( % ,  Y? z)g) 

J -m 

J-CS 

When we set z = 1, we find that the coefficient takes h e  form 
of the narrow band cross ambiguity function. Of course, letting f = g 
leads to the narrow band ambigoity function, a connection with the 
Heisenberg group which allows us to discover many properties. 

One of the more important of these properties is thc volume 
conservation property of the narrow band ambiguity functions. TO 
derive this abstractly, one must prove that the representation U of 
'H is square integrable. However, since the parametrization in the 
previous section does not lead to a square integrable representation, it 
is necessary to display a new parametrization as follows: 

This parametrization changes the multiplication rule: 

As one can see by the above, the reparametrization really only 
consists of exponentiating the third component of each element. 

Under this reparametrization, the left and right invariant measure 
of 'H can be computed to be: &dydz/27~,  the proof of which is 
contained in [l]. This, by the way, shows an example of a unimodular 
group which is not commutative. By the Frobe~us-Schur-Godement 
theorem, all of L2(R) is the set of admissible vectors. An explicit 
proof is presented in [l]. 

By the same theorem, substiming appropriately for the case of 
31, then 

If we let f = fi = gd, i = 1,2; ,  then we obtain: 

r l  e m  rm  

If we further assume t%at [ l f l l  = 1, the above expression simpli- 
fies to: 

This is the statement of the conservation of ambiguity volume. 
Seen in this context, the conservation propcrty is true of any "ambi- 
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guity function" which is a matrix coefficient of a unimodular group. 

The conservation of narrowband ambiguity volume having been 
proved, it is natural to ask whether a similar conservation law holds 
for wide band ambiguity functions. Unfortunately, the answer is no, 
based on group theoretic reasoning. 

The Affine group, A' has a unitary representation A on L2(R) 
as follows: A(s ,  T )  is the unitary operator corresponding to (3, T )  in 
A' of the form: 

A(s,r)f(t)  = T,Dsf(t) 
= J;;f(st + T ) .  

As in the case of 'H, we form the coefficient of this representa- 
tion: 

which is the wavelet transform of f with respect to g. 

One immediately sees that this coefficient is no other than the 

The group dl may be reparametrized in the form: 

wide band ambiguity function. 

( 3 , 4  H (e--, 71, 

where s can take on all real values. The corresponding left invariant 
measure can be shown to be e'dsdr and the right invariant measure is 
dsdr. A1 is thus not a unimodular group. It is proved in [l] that the 
admissible vectors of the representation above are those g such that: 

where #(U) denotes the Fourier transform of g(t) .  

Letting s and r vary, C A , ~ , ~  traces a surface in space called 
the wideband ambiguity surface. Unlike the narrowband case, the 
volume under this surface for l l f l l  = 1 is nor constant. Indeed the 
same calculation proving the square integrability of A yields: 

Letting f = g. we obtain the volume formula: 

which agrees with an independent calculation by Sibul and Titlebaum 
[19]. Hence wideband ambiguity is not consetved. 

Thus some properties of ambiguity functions may be traced back 
to properties of groups they represent. 

INVARIANCE PROPERTIES 

In [20], Altes proved various invariance properties of the wide- 
band ambi guity function. These results can also be viewed as a 
consequence of the wideband ambiguity function k i n g  the coefficient 
of a unitary representation of the affine group. However, Altes used 
the formula: 

00 

Wf.9 = lw f(t)g*[s(t + 414 

instead of: 

Both forms are used in the engincering literature. The second 
form, however, is a coefficient of the affine group, and so exhibits 
much symmetry. We will focus on the second form, however it is not 
difficult to transform it to the first by a change of variable. 

As a first example, Altes proved that W S , ~  ( s ,  T )  = 
W;,f (s-l, - T / s ) .  This fact can be seen from a group theoretic point 
of view as follows: 

Wr,&17) = (f?AA(3,T)d. 

It can thus be seen that this proof gives some indication of the sym- 
metries underlying the ambiguity function. 

The symmetry exploitation idea may be extended by examining 
relationships between various subgroups of the affine group. The 
subgroup of dilations, the matrices of the form 

has a unitary representation D on L2((R))  : 

Dkf( t )  = &f(kt). 

But it can be shown that Dk o A(s ,  r )  = A(s, T )  o Dk by mul- 
tiplying matrices. Hence the representations of the dilation subgroup 
and the affine group commute as well. This is the basis for Altes' 
result: If f ( t )  = kl/'u(kt) and g(t) = k1l2v(kt), then 

IWg,f (37 .)I2 = lwu,u(t, 311'. 
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Our final example will illustrate another aspect of group theory. 
A unitary representation of a Lie group G can be seen as a map 
from G to the unitary group of L2(R) possessing nice properties such 
as differentiability, and preservation of group structures. Technically, 
such a map is called a diflerentinble homomorphism, although such 
tcrminology need not concern us here. The image of this type of 
map is known to be a subgroup of the unitary group, thereforc it is 
possible to investigate relationships between the unitary representation 
op~rators and other unitary operators. 

One such operator i s  the “inversion operator” Z : L2(R) --+ 

L2(R) : 
Zlf(91 = f(-+ 

Z is not a representation of the affine group since it is equivalent 
to a negative dilation. However, we can prove that: 

A( 3,  7) o Z = Z o A(3, -T) , 

Indeed, 

4 3 , 7 - ) o ~ i f ( t ) l  = 4 3 ,  7)lf(--t)l 
=z f(-3t f 7) 

= f(-(st - T)) 
= Zf(3t - 7) 

= z 0 4 3 ,  -.)V(t)l, 

which was to lx proven. 

T i s  fact can bc used to deduce one of Altes’ results: If f ( t )  = 
u(- t )  and g(L) := v(- t ) ,  h e n  Wg,j(8,.) = WV,+(8, -7) .  The idea 
of the proof is similar to the others: 

W9A3, 7) = (9, A(3, .If) 
= (TU, A(s ,  7)Z’u) 

(zU,ZA(3, -7)’u) 

= ( U ,  A ( s ,  -.)U) 

= WU,V(~, -7). 

The next to last step follows from the fact that Z is a unitary operator. 

Many other properties of the wide band ambiguity function may 
bc provcd using these ideas. In fact, similar propenies of the narrow 
band ambiguity function may be obtained by the fact that i t  is the 
coefficicnt of a representation of the Meisenbeg group. Invariance 
properties of the wide and narrow band ambiguity functions may be 
discovered and proved by investigating properties of the group ele- 
mens within the groups to which they are related. 

Widcband and narrowband ambiguity functions are time x fre- 
quency plane localization operators, as are corresponding wavelet 
transforms. Wideband ambiguity functions are affine wavelet tians- 
forms and narrowband ambiguity functions are generalized Gabor 
transforms or Heiscnberg wavelet transforms. In this and in a pre- 
vious paper :21] we have shown that group representation theory pro- 
vidcs a unified framework for the study of all above-mentioned time 

CONCLUSIONS 
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x frequency plane (phase space) localization operators. In particular, 
group representation theory has provided new insight into admissi- 
ble signals, ambiguity volume conservation, and ambiguity function 
invariance properties. 
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