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ABSTRACT 

In order for estimating the location of a passive emitter, signal data must be collected 

at a multitude of sensors and the sensors must cooperate to achieve the task. Our goal is 

to achieve network-wide optimization over a large number of simultaneously deployed 

sensors to enable more efficient and effective cooperation within the network of sensors.  

This dissertation covers the following aspects: i) The emitter location estimation 

accuracy is related with many items, giving an overall review of how the measurements 

quality (such as the accuracies of TDOA and FDOA) and sensors’ navigation data (such 

as position and velocity) will affect the estimation errors, and developing the relationship 

among those aspects; (ii) Since the accuracy of parameter estimation is related with the 

signal model, exploiting the importance of deciding the signal model used in location 

estimation problem and giving out the results of different models; (iii) To save the system 

energy and reduce computation latency, developing various methods to select and pair a 

subset of sensors to satisfy the system requirements; (iv) Based on the relationship 

between estimation accuracy and sensors’ navigation data, discussing the probability of 

computing the next optimal state; (v) Since sensors’ navigation data along with 

uncertainty, exploiting the sensors’ navigation data errors effects on least square 

estimation and giving solution to mitigate these errors. The results of this dissertation will 

provide a systematic means for addressing network management and sensor management 

issues across the spectrum of sensor network. 
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1 Introduction 

Estimating the location of a passive emitter has been a research issue for decades ([6]-

[21]). The estimation procedure has two steps. First: estimate sensors’ received signal 

parameters, such as arriving time, frequency, angle, phase, or the energy.  Second: use the 

parameters estimated in the first stage to estimate the emitter location. These sensors are 

located at some vehicles or aircrafts, and the unmanned vehicles are becoming more and 

more popular. In order for wireless sensor networks to exploit a signal, signal data must 

be collected at a multitude of sensors and the sensors must cooperate to achieve the task.  

Our general interest is in achieving network-wide optimization over a large number of 

simultaneously deployed sensors to enable more efficient and effective cooperation 

within the network of sensors. Fisher information can be used to assess the data quality 

across multiple sensors to manage the network of sensors to optimize the location 

accuracy subject to communication constraints. For emitter location it is well-known that 

the geometry between sensors and the target plays a key role in determining the location 

accuracy.  Furthermore, the deployed sensors have different data quality.  Given these 

two factors, it is no trivial matter to do the network and sensor management as mentioned 

above. 

Whatever methods used to estimate the emitter location will come with the estimation 

errors. The estimation accuracy is related with many aspects: the sensors’ received signal 

data quality, the sensors’ positions and velocities, and the related geometrical properties 

among sensors and emitter. For examples, [16] gives the “one-sigma-width” to 

characterize the emitter location accuracy, which is based on only one signal parameter 

measurement. But for TDOA/FDOA (time difference of arrival/frequency difference of 
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arrival) localization problem, we need at least two (for two dimensional system) signal 

parameters measurements to locate the emitter.  [8] links the conventional accuracy 

measures to the moments and products of inertia of a mass configuration and gives some 

special geometry examples. We exploit the relationship between the emitter location 

accuracy and all other accuracies of relative measurements and geometrical aspects in 

general cases. It gives an overview of how all these aspects will affect the final accuracy, 

and the trade off among them.  

For the given sensors network, it is desirable to use the complete set of sensor 

resources to do the task. However, that will result in an excessive data computation and 

communication in the network. And the main constraints of wireless sensor network are 

the limited on-board energy and limited channel resources. Many approaches have been 

proposed in the past to satisfy the network resource requirements, such as routing, sleep 

modes, low-power electronics, etc. For examples: one data compression method was 

proposed by Professor Fowler and Dr. Mo Chen in Dr. Mo Chen’s dissertation [23]. 

Sensor selection is one of the solutions to save system energy which is to select a subset 

of sensors to achieve the requirement. Using the information theory to do the sensor 

selection was proposed in [36][37].  A new method is proposed in this dissertation: Fisher 

information based Sensor Selection and Pairing, which is more efficient and accurate.  

Our work is to manage the given set of sensors to satisfy the emitter location accuracy 

demanding. We propose various approaches to this problem and discuss trade-offs among 

them.  For examples: One method assumes that the sensors have pre-paired and share 

their data between these pairs; sensor selection then consists of selecting pairs to optimize 

performance while meeting constraints on number of pairs selected;  Another method 
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consists of optimally determining pairings as well as selections of pairs with or without 

sensor sharing.  

To estimate the emitter location, we need some signal’s measured/estimated 

parameters from sensors’ received data, and we also need the sensors’ navigation data, 

such sensors’ positions and velocities. In practice, the positions and velocities of sensors 

can not be known exactly. A closed form solution to take the receiver error into account 

was given in [40], which uses two steps estimation methods to solve the problems. We 

exploit an expression about how these navigation data will affect the estimation accuracy 

and give out an error mitigation processing, which will play an important role in the 

decrease of estimation deviation. Our method is more simple and with less assumptions 

compare with others’ methods. 

Also if we can maneuver the sensors, based on the current information we have about 

the sensors and the data quality, we can decide the next optimal states of sensors 

(sensors’ positions and velocities) within the next research sets. It is called the maneuver 

of sensors or trajectory planning. We proposed the basic idea about the next optimal 

states. And developing solutions for some sub-optimal problems. 

   

The contributions of this dissertation include: i) Giving an overall review of how the 

measurements quality (such as the accuracies of TDOA and FDOA) and sensors’ 

navigation data (such as position and velocity) will affect the estimation errors, and 

developing the relationship among those aspects; (ii) Exploiting the importance of 

deciding the signal model used in location estimation problem, and giving out the 

different results for different models on Fisher information calculation, maximum 
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likelihood estimator and etc.; (iii) Developing various methods to select and pair a subset 

of sensors to satisfy the system requirements, such as saving system energy and reduce 

computation latency; (iv) Exploiting the sensors’ navigation data errors effects on 

calculation Fisher information and least square estimation, and giving solution to mitigate 

these errors. (v) Discussing the probability of computing the next optimal state, and 

giving some results on sub-optimal problems; The results of this dissertation will provide 

the engineer with a systematic means for addressing network management and sensor 

management issues across the spectrum of sensor network.   
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2 Parameter Estimation 

Emitter localization is to estimate the emitter location by some parameters of the 

signal sent by the emitter. There are two stages parameter estimations: one is the signal 

parameter estimation, the other one is the emitter location estimation. In this chapter we 

introduce the basic concepts, properties and two estimation methods of parameter 

estimation we used in this dissertation.  

2.1 Signal Model 

Parameter estimation is to estimate a parameter through some measured data, which 

depend on the unknown parameter. Assume we measured N samples data as 

{ }[0], [1], , [ 1]x x x N= −x " , the parameter estimator can be written as  

 ˆ( ) ( [0], [1], , [ 1])g x x x Nθ = −x "  (2-1) 

where g is the function we used to estimate the parameter θ .  

To estimate the parameter of a signal, we need a signal model first, which specifies 

the relationship between the unknown parameter and received data. The data received are 

random because of the noise coming with it, so we can describe it by its probability 

density function (PDF). There are two different scenarios related with the deterministic 

property of the parameter. (1) If the parameter to be estimated is deterministic, then the 

PDF of received signal is parameterized by the unknown parameter as ( ; )p θx . The 

estimation is called classical estimation, which we chose in this dissertation. (2) The 

other scenario is that the unknown parameter is a random variable and we have a prior 

knowledge about it, which is ( )p θ . The parameter to be estimated is viewed as one 
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realization of the random variable θ . The joint PDF of measured data and unknown 

parameter can be written as ( , ) ( | ) ( )p p pθ θ θ=x x , where ( | )p θx  is a conditional PDF 

of x  conditioned on θ . The estimation is called Bayesian method.  

For both deterministic and random variable cases, the parameter estimation is an 

optimal procedure to determine the unknown parameter via the PDF of the measured data. 

The PDF may also depend on other parameters assumed known. One of this dissertation’s 

tasks is to exploit the importance of the assumed known parameters and optimal them. 

Assume that a signal with an unknown parameter θ  is observed in noise as 

 [ ] [ ; ] [ ] 0,1, , 1x n s n w n n Nθ= + = −…  (2-2) 

The dependence of  [ ; ]s n θ  on θ  is assumed known. The vector form of (2-2) can be 

written as 

 ( )θ= +x s w  (2-3) 

For the received radio frequency (RF) signal we are dealing with, the received noise is 

normally assumed Gaussian noise with zero mean and covariance matrix wC . We will 

give the PDF of x  at different scenarios. 

1. Deterministic Parameter and Deterministic Signal Model 

If both θ  and is [ ]s n  are deterministic, the PDF of x  is functionally depends on θ  as 

 [ ] [ ]1
1 22

1 1( ; ) exp ( ) ( )
2(2 )

T

N
p θ θ θ

π
−⎧ ⎫= − − −⎨ ⎬

⎩ ⎭
w

w

x x s C x s
C

 (2-4) 

2. Deterministic Parameter and Random Signal Process 

If θ  is deterministic, but [ ]s n  is a random process and assumed having Gaussian 

distribution with zero mean and the variance of it depends on θ . Then the PDF of x  is 

functionally depends on θ  as 
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 1
1 22

1 1( ; ) exp ( )
2(2 ) ( )

T
N

p θ θ
π θ

−⎧ ⎫= −⎨ ⎬
⎩ ⎭

x
x

x x C x
C

 (2-5) 

where ( )θC  means the covariance matrix of x  is a function of θ , and it depends on both 

the signal and noise. 

Why we need to consider the signal model to be deterministic or random for both 

deterministic unknown parameter cases? Since the key distinction between these two 

scenarios will drive difference results in finding an optimal estimator for the unknown 

parameter. One of this dissertation’s contributions is to exploit the importance to make a 

correct assumption on the signal model. We discuss it in chapter 3.  

3. Random Parameter and Deterministic Signal Model 

In this case, the unknown parameter is assumed random with prior known PDF ( )p θ . 

The conditional PDF of observed data conditioned on θ  is 

 [ ] [ ]1
1 22

1 1( | ) exp ( ) ( )
2(2 )

T

N
p θ θ θ

π
−⎧ ⎫= − − −⎨ ⎬

⎩ ⎭
w

w

x x s C x s
C

 (2-6) 

Then the joint PDF of x  and θ  is  

 [ ] [ ]1
1 22

1 1( , ) exp ( ) ( ) ( )
2(2 )

T

N
p pθ θ θ θ

π
−⎧ ⎫= − − − ⋅⎨ ⎬

⎩ ⎭
w

w

x x s C x s
C

 (2-7) 

4. Random Parameter and Random Signal Process 

Both the parameter and signal are random. [ ]s n  assumed having Gaussian 

distribution with zero mean and the variance of it depends on θ . Then the joint PDF of x  

and θ  is  

 1
1 22

1 1( , ) exp ( ) ( )
2(2 ) ( )

T
N

p pθ θ θ
π θ

−⎧ ⎫= − ⋅⎨ ⎬
⎩ ⎭

x
x

x x C x
C

 (2-8) 
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We will not discuss more about the random parameter cases in this dissertation, since 

we assume the emitter location is deterministic.  

2.2 Cramer-Rao Lower Bound and Fisher Information 

An estimator ˆ( )θ x  is a random variable since it is a function of random variables x . 

To assess how accurate it is, we need to calculate some characters of a random variable, 

such as the mean and variance.  

 Bias of an Estimator 

The bias of an estimator is the difference between the true value of the parameter and 

the expectation value of the estimator as 

 { }ˆb( ) Eθ θ θ= −  (2-9) 

Unbiased estimator is the one with zero bias.  

 Mean Square Error (MSE) of an Estimator 

The expectation of the square of estimation error, defined as 

 
{ }2

2

ˆ ˆmse( ) E ( )

ˆ ˆ           = var( ) b ( )

θ θ θ

θ θ

= −

+
 (2-10) 

From (2-10), the MSE is compose of both variance and bias of θ̂ . The normally optimal 

estimator is the one that has the minimum MSE (MMSE). 

 Minimum Variance Unbiased (MVU) Estimator 

A MVU estimator is the one that has the minimum variance among all the unbiased 

θ̂ . For the unbiased estimator, b( ) 0θ = , then ˆ ˆmse( )= var( )θ θ , MVU is also MMSE.  

The minimum variance of any unbiased estimator of θ  is called Cramer-Rao Lower 

Bound (CRLB) of θ . CRLB provides a useful lower bound on the variance of any 
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unbiased estimator. If the variance of an estimator equals CRLB for each possible value 

of θ , then it is the MVU estimator.  

 CRLB, Scalar Parameter [1] 

 If it is assumed that the PDF ( ; )p θx  satisfies the “regularity” condition 

 ln ( ; )E 0   p for allθ θ
θ

∂⎡ ⎤ =⎢ ⎥∂⎣ ⎦
x  (2-11) 

where the expectation is taken with respect to ( ; )p θx . Then the CRLB of θ  can be 

calculated as 

 
2

2

1 1CRLB( )
I( )ln ( ; )E p

θ
θθ

θ

= =
⎡ ⎤∂

− ⎢ ⎥∂⎣ ⎦

x
 (2-12) 

where the derivative is evaluated at the true value of θ  and the expectation is taken with 

respect to ( ; )p θx . I( )θ  is called the Fisher information (FI)  of θ . 

The variance of any unbiased estimator ˆ( )θ x  must satisfy 

 ˆvar( ) CRLB( )θ θ≥  (2-13) 

So far we talked about scalar parameter case, we now extend the results to the vector 

parameter case. 1[ , , ]T
pθ θ=θ "  is the vector to be estimated and [ ; ]s n θ  is the signal 

which parametered by θ . 

 CRLB, Vector Parameter [1]: 

If the PDF ( ; )p x θ  satisfies the “regularity” condition 

 ln ( ; )E   p for all∂⎡ ⎤ =⎢ ⎥∂⎣ ⎦
x θ 0 θ
θ

 (2-14) 

where the expectation is taken with respect to ( ; )p x θ . Then the Fisher information 

matrix (FIM) of θ  can be calculated as 
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 [ ]
2 ln ( ; )( ) E 1 ,

ij
i j

p i j p
θ θ

⎡ ⎤∂
= − ≤ ≤⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦

x θI θ  (2-15) 

where the derivative is evaluated at the true value of θ  and the expectation is taken with 

respect to ( ; )p x θ . The CRLB matrix of θ  is 

 1( ) ( )−=CRLB θ I θ  (2-16) 

The covariance matrix of any unbiased estimator ˆ( )θ x  must satisfy 

 
1 1

1

ˆ ˆ ˆvar( ) cov( , )
ˆ( ) ( )

ˆ ˆ ˆcov( , ) var( )

p

p p

θ θ θ

θ θ θ

⎡ ⎤
⎢ ⎥

= ≥⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C θ CRLB θ
"

# % #

"

 (2-17) 

“≥” means ˆ( ) ( )−C θ CRLB θ  is a semi-positive definite matrix, then  

 ˆ ˆvar( ) [ ( )] [ ( )] 1, 2,...,i ii ii i pθ = ≥ =C θ CRLB θ  (2-18) 

Since the Fisher information of the unknown parameter is calculated for the 

derivative of the PDF of observed data, therefore FI depends on the sensitivity of the PDF 

on the unknown parameter. The more sensitive the PDF is influenced by the unknown 

parameter, the larger the FI, the smaller the CRLB and the better we could estimate it, 

and vice versa. The PDF of x  also depends on the parameters we assumed known. So if 

the signal model is fixed, we can increase the sensitivity by modify the known parameters. 

This is the motivation of this dissertation, because Fisher information captures the entire 

essential trade-offs embedded in the estimation problem.   

 CRLB for the general Gaussian case 

In the case of Gaussian observation assume that ~ ( ( ), ( ))Nx μ θ C θ , where ( )μ θ  is the 

1N ×  mean vector and ( )C θ  is the N N×  covariance matrix, both of them depend on θ . 

Then the PDF is  
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 [ ] [ ]1
2 1 2

1 1( ; ) exp ( ) ( ) ( )
(2 ) det [ ( )] 2

T
Np

π
−⎧ ⎫= − − −⎨ ⎬

⎩ ⎭
x θ x μ θ C θ x μ θ

C θ
 (2-19) 

The FIM is given by [1] 

 [ ] 1 1 1( ) ( ) 1 ( ) ( )( ) ( ) ( ) ( )
2

T

ij
i i i j

tr
θ θ θ θ

− − −
⎡ ⎤⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂

= + ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

μ θ μ θ C θ C θI θ C θ C θ C θ  (2-20) 

The FI of each item is composed by two items. The first one depends on mean and 

covariance and the second one is only related with covariance. We will discuss (2-20) in 

more details later.  

2.3 Maximum Likelihood Estimator 

The MVU estimator may not exist or even it exists but maybe not obvious. So 

sometimes we may use an approximately optimal estimator. The maximum likelihood 

estimator (MLE) is such an approximately MVU estimator. And we use MLE to 

estimating TDOA/FDOA in this dissertation, which we will discuss in more details in 

next chapter. In this section, we introduce what MLE is, how to find MLE and the most 

important property of it. 

( ; )p dθx x  is the probability of measured x  for a given θ . So for fixed x , the θ̂  that 

maximize the probability could be the true value of θ .  In Figure 1, the Y-axis is the 

value of ( ; )p θx  evaluated at given 0=x x  and possible value of θ , X-axis is the possible 

values of θ . Since 0 1( ; )p θx  has the largest value of 0( ; )p θx , it is more likely that 1θ  is 

the true value of θ  if 0=x x  is observed. Or we can say 1θ  maximize the value of 

0( ; )p θx , which is called the likelihood function.  
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0( ; )p θx

θ1θ 2θ  

Figure 1 Likelihood function of unknown parameter evaluated on fixed measured data 

Definition of MLE: The MLE for a parameter is the value of θ  that maximize 

( ; )p θx  for x  fixed, where ( ; )p θx  is called the likelihood function.  

The general analytical procedure to find the MLE is: 

(1) Find the log-likelihood function: ln ( ; )p θx ; 

(2) Differentiate ln ( ; )p θx  with respect to θ  and set to 0 as ln ( ; ) 0p θ θ∂ ∂ =x ; 

(3) Solve for θ  value that satisfies the zero equation. 

The definition of scalar parameter MLE is easy to be carried over to the vector 

parameter case as the vector ˆ
MLθ  that satisfies: ( ; )p∂ ∂ =x θ θ 0 , where 

 
1

( ; )

( ; )

( ; )

p

p

p

p

θ

θ

⎡ ⎤∂
⎢ ⎥∂⎢ ⎥∂ ⎢ ⎥=

∂ ⎢ ⎥
∂⎢ ⎥
⎢ ⎥∂⎣ ⎦

x θ

x θ
θ

x θ
#  (2-21) 

The MLE is largely used since for any given ( ; )p x θ  MLE always exists, even if 

there is no explicit solution we can always find an optimal one by numerical method, and 

its asymptotically optimal property makes MLE as the optimal estimator. 
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Asymptotic Property of MLE [1]: If the PDF ( ; )p x θ  satisfies the “regularity” 

condition as (2-14), then the MLE of θ  is asymptotically Gaussian distributed according 

to 

 1ˆ ~ ( , ( ))
a

ML N −θ θ I θ  (2-22) 

where “asymptotically distributed” means for large data measured. The MLE is 

asymptotically unbiased and asymptotically attains the CRLB, therefore it is 

asymptotically efficient and optimal, or asymptotically MVU.  

In the TDOA/FDOA localization problem, this asymptotical property plays an 

important role in estimating the emitter location which we will discuss later. 

2.4 Least Square Estimator 

The MLE needs PDF ( ; )p x θ  known, and normally we assumed it has Gaussian 

distribution for solving simplicity. But if we do not know the distribution exactly or the 

PDF is complicated to be simplified, we need the estimators not based on PDF to do the 

job. Least square estimator (LSE) is one of the estimators that are not statistically based. 

LSE does not need a PDF model but do need a deterministic signal model. So far we 

discussed the optimal estimator is the MVU which is unbiased and has minimum 

variance. LSE uses different criterion to find the optimal solution. It minimizes the 

difference between the observed data [ ]x n  and the generated noiseless data ˆ[ ; ]s n θ  as 

shown in Figure 2, [ ; ]s n θ  is the true noiseless signal parametered by unknown parameter 

vector θ , [ ]x n  is the perturbed measured data, ˆ[ ; ]s n θ  is the data generated by estimated 

parameter θ̂ , and [ ]nε  is the estimation error also called estimation cost.  
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θ

[ ; ]s n θ

[ ]w n

[ ]x n

θ̂

ˆ[ ; ]s n θ

[ ]nε

 

Figure 2 Signal model and least square approach 

Definition of LSE: The LSE for a vector parameter is the value of θ  that minimizes 

the cost function ( )J θ  which is defined as 

 ( ) [ ] [ ]
1

2

0
( ) [ ] [ ; ] ( ) ( )

N
T

n
J x n s n

−

=

= − = − −∑θ θ x s θ x s θ  (2-23) 

and  

 { }ˆ arg min ( )LS J=
θ

θ θ  (2-24) 

 Weighted Least Square 

Sometimes not all data observed have equally quality. Weighted method is used to 

de-emphasize the data with worse quality and emphasized the one with better quality. 

The cost function is updated to   

 ( ) [ ] [ ]
1

2

0
( ) [ ] [ ; ] ( ) ( )

N
T

n
n

J w x n s n
−

=

= − = − −∑θ θ x s θ W x s θ  (2-25) 

where normally W  is related with the data quality as 1−= wW C  . Normally the solution of 

(2-25) is the value of θ  that satisfies 

 1( ) ( ) ( )2
TJ −∂ ∂ ∂⎡ ⎤ ⎡ ⎤= − =⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦

w
θ s θ s θC 0
θ θ θ

 (2-26) 

 LSE and MLE for Gaussian Noise Case 

We known for the Gaussian noise case, MLE is the solution for  
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 1ln ( ; ) ( ) ( )Tp −∂ ∂ ∂⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦
w

x θ s θ s θC 0
θ θ θ

 (2-27) 

Therefore the solution is the same as the solution for (2-26). So for Gaussian noise case, 

MLE and LSE have the same solution. That means even if we assume the noise is 

Gaussian, but in fact it is not Gaussian, at least we get the LSE solution. 

 Linear Least Squares 

Signal has linear model on the parameter vector θ  can be described as 

 =s Hθ  (2-28) 

where H  is a known N p×  observation matrix and assumed full rank. The WLSE is 

found by minimizing 

 ( ) ( )( ) TJ = − −θ x Hθ W x Hθ  (2-29) 

The solution is  

 ( ) 1ˆ T T
WLS

−
=θ H WH H Wx  (2-30) 

 Nonlinear Least Square 

For nonlinear signal model, there is no exploit solution for (2-24), We need the 

iterative method to solve it. There are two most common approaches: Newton-Raphson 

and Gauss-Newton. The first one applies iteratively repeat on the linearized cost function 

( )J θ  about the current estimated θ̂ . The second one instead applies iteratively repeat on 

the linearized signal model ( )s θ  about the current estimated θ̂ . The iterative equations 

are given as [1]: 

• Newton-Raphson: 

 ( ) ( )
11

ˆ ˆ ˆ ˆ1
0

ˆ ˆ ˆ ˆ( ) [ ] [ ] ( )
k k k k

N
T T

k k n k k
n

x n s n
−−

+
=

⎡ ⎤
= + − − −⎢ ⎥⎣ ⎦

∑θ θ θ θ
θ θ H H G θ H x s θ  (2-31) 
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• Gauss-Newton: 

 ( )1

ˆ ˆ ˆ1
ˆ ˆ ˆ( )

k k k

T T
k k k

−

+
⎡ ⎤= + −⎣ ⎦θ θ θ

θ θ H H H x s θ  (2-32) 

where  ˆ
kθ  is the thk  iterative estimate of θ , ˆ

kθ
H  is called the Jacobin matrix. It is the 

first order partials of signal with respect to unknown parameter as,  

 ˆ
ˆ

( )
k

k=

∂
=

∂θ
θ θ

s θH
θ

 (2-33) 

ˆ( )n kG θ  is called Hessian matrix and it is the second order partials as  

 
2

ˆ

[ ]ˆ( )
k

n k T

s n

=

∂
=
∂ ∂

θ

θ θ

G θ
θ θ

 (2-34) 

Which one to be chosen depends on the signal model, such as how large is the second 

order derivative and how complicated it is. In this dissertation, we use Gauss-Newton 

method and the reasons are discussed later. 

 

In this chapter, we introduction what is parameter estimation. To estimate the 

unknown parameters, first of all, we need a signal model and PDF to describe the 

statistical characteristics of observed data, then based on the PDF to calculate one of the 

most important bound to assess the accuracy of a MVU, the CRLB or the FIM. We also 

introduced two estimation methods: MLE and LSE, the definition and estimation 

procedures of them. We use these two methods in this dissertation.  
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3 TDOA/FDOA Localization-Known and New 

Foundations 

Estimating the location of a passive emitter has been a research issue for decades 

([6]~[20]). The procedure is that sensors receive signals sent by the emitter, estimate one 

or more signal parameter(s) (such as arriving time, carrier frequency, arriving angle and 

phase) and then use these measurements to estimate emitter location. Regardless of what 

parameter(s) measures, we need to find a signal model that describe the relationship 

between the measured parameter(s) and the emitter location first, and then use some 

estimation methods (such as MLE, LSE) to estimate the emitter location.  

There are single-platform method and multiple-platforms method. Single-platform 

measures the signal parameters consequently within some time intervals. Multiple-

platforms measure the signal parameters at the same time. The single one has more 

flexibility since it only needs one platform to do the task. Multiple-platforms can 

generally provide higher accuracy and can do multi-tasks simultaneously. In this 

dissertation we choose multi-platforms methods to get higher estimation accuracy and 

network flexibility.  

Among all the measurements, Time-Difference-of Arrival (TDOA) and Frequency-

Difference-of Arrival (FDOA) have been shown to enable highly accurate locations. One 

measurement of either TDOA or FDOA provides a curve (if assume two dimensional, for 

three dimensional it is a surface) on which the emitter is known to lie. Two (three for 

three dimensional, here after we all assume two dimension for illustration simplicity.) 

such measurements will have an intersection, which is the estimated emitter location. The 
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signal parameter and geometry properties define the shape of the curves. Since the 

received data always come with noise, the estimated signal parameter(s) come with errors, 

and the given sensor’s geometry data are not exactly correct, therefore the estimated 

location is related with all measurements. The main contribution of this dissertation is to 

find the relationship among them and try to use these properties to have network-wised 

optimization.  

3.1 Overview of TDOA/FDOA Location 

3.1.1 Doppler Shift and Time Delay 

In order to introduce the TDOA/FDOA localization, we need to give a basic idea 

about what are Doppler shift and time delay and how they affect the received signals. 

Assume the signal transmitted by the emitter is ( )f t , since the sensor is moving the 

distance between the emitter and sensor is also a function of time as ( )R t , then the radio 

frequency (RF) signal propagation time is ( ) ( ) /t R t cτ = , the signal received at the sensor 

can be describe as ( ) ( ( ))rf t f t tτ= − . The Doppler shift and time delay are all induced 

from ( )R t , which is 

 2
0

1( )
2

R t R v t a t= + ⋅ + ⋅ +" (3-1) 

We keep up to the first order, since in small time interval the velocity change is 

negligible. Then the received real narrow-band signal can be written as 

 0 0( ) ( [ ] / ) ([1 / ] / )rf t f t R v t c f v c t R c= − + ⋅ = − −  (3-2) 
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where c  is the speed of light, [1 / ]v c−  is the time scaling and 0 /R c  is the time delay 

names as dτ . The analytic signal [4] model of the transmitted one can be written as 

 [ ( )]( ) ( ) cj t tf t E t e ω φ+=�  (3-3) 

Then the corresponding received signal is  

 { [1 / ] ([1 / ] )}( ) ([1 / ] ) c d dj v c t v c t
r df t E v c t e ω τ φ ττ − − + − −= − −�  (3-4) 

Based on the narrow band approximation [4]  ([1 / ] ) ( )E v c t E t− ≈  and 

([1 / ] ) ( )v c t tφ φ− ≈ . Therefore the simplified narrowband low-pass equivalent signal 

model is 

 ˆ( ) ( )dj tj
r df t e e f tωα τ−= −�  (3-5) 

where c dα ω τ= −  is the constant term, /d cv cω ω=  is the Doppler shift term, and 

( )ˆ ( ) ( ) dj t
d df t E t e φ ττ τ −− = −  is the time delay term. ( )rf t�  is the signal that actually gets 

processed digitally, dτ  and dω  are the time delay and Doppler shift to be dealing with. 

To find the time delay, we need to get the time of arrival (TOA) of ( )rf t  at receivers. 

Assume for thk  receiver it is kt , the unknown time of signal transmitted is 0t , and the 

distance between the sensor and emitter is kd . The relationship among these parameters 

is 

 0 /k kt t d c= +  (3-6) 

kd  can be expressed by terms of the unknown emitter location and known sensor position, 

kt  can be estimated, but 0t  is not easy or even impossible to estimate. So we can not use 

(3-6) to estimate the unknown location emitter directly, since there is another unknown 
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item 0t  in it. We can eliminate the unknown 0t  by subtracting one equation from another; 

for example, subtract one from its previous one as 

 1 1( ) /k k k k kt t t d d c− −Δ = − = −  (3-7) 

ktΔ  is called the time difference of arrival (TDOA) which can be estimated. Then solving 

two or more of (3-7) can get the estimation of emitter location which in embedded in 

1 and k kd d − .  Following the same discussing, we can use the frequency difference of 

arrival (FDOA) of two receivers to estimated the emitter location by solving two or more 

of the equation 

 1 1( ) /k k k k kd d cω ω ω − −Δ = − = −� �  (3-8) 

where kd�  is the time differential of the distance. We will discuss the equations in more 

details later. 

 

The localization consists of solving a sequence of two estimation problems: (i) 

processing the intercepted signal samples to estimate the TDOA/FDOA between pairs of 

sensors, and (ii) processing the TDOA/FDOA estimates to estimate the location of the 

source.   

For simplicity we consider only 2-Dimensional ground-based scenario. We wish to 

find the location of a stationary emitter, denoted by [ , ]T
e e ex y≡p , and given the sN  

sensors, whose positions are [ , ]T
i i ix y≡s  and speeds are [ , ]T

i i ix y≡s� � � , for 1,2, , si N= …  .  

Figure 3 is an example of 6 sensors system, there are 3 pairs in this system. 
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Figure 3 Geometry for stationary source localization system. 

3.1.2 First stage: TDOA/FDOA Estimation 

The received signal at thk  sensor is modeled as  

 ( ) ( ) ( )kj t
k k kx t f t t e w tω= − +  (3-9) 

where  ( )f t  is the transmitted low-pass equivalent signal, kt  is the time delay, kω  is the 

Doppler shifts, kw  is the additive white Gaussian noise with zero mean and 2
kσ  as 

variance, also assumed independent of each other sensors.  

Assume the thm  pair is paired by thi  and thj  sensors. The TDOA m i jt tτ = −  and the 

FDOA  m i jυ ω ω= −  are the parameters to be estimated from time-domain samples of 

these signals.  

From [13], we know the cross-correlation method is used to estimate the TDOA and 

FDOA between two received signals. The method correlates one received signal with the 

signal from the paired sensor to find the time delay difference and Doppler shift 

difference that make the correlation maximum. It is the maximum likelihood estimator. 

Rewrite the two received signals as 
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( ) ( ) ( )

( ) ( ) ( )m

i i i

j t
j i m j

x t f t w t

x t f t e w tυτ

= +

= − +
 (3-10) 

where ( ) ( ) ij t
i if t f t t e ω= − . Then, use the cross-correlation method on (3-10) to estimate 

the mτ  and mυ  which maximize the complex ambiguity function as 

 
0

( , ) ( ) ( )
T j t

i jA x t x t e dtυτ υ τ −= +∫  (3-11) 

Let [ , ]T
m m mτ υ=θ  be the parameter vector to be estimated, ˆmτ  and ˆmυ be the estimates, 

mτΔ  and mωΔ  be the estimation errors, then 

 
ˆ
ˆ
m m m

m m m

τ τ τ

υ υ υ

= + Δ

= + Δ
 (3-12) 

The asymptotic properties of ML estimator gives that the PDF of mθ  is Gaussian with 

covariance matrix that is the CRLB of mθ , so 

 1~ ( , )
a

m
m

m

N
τ
υ

−Δ⎡ ⎤
⎢ ⎥Δ⎣ ⎦

0 F  (3-13) 

where mF  is the FIM of mθ . Stein’s paper [13] gives how to compute the FI for TDOA 

and FDOA, and we will discuss it in more detail later. 

Assume there are M pairs in the network. FIM of 1 2[ , , , ]T T T T
Mθ θ θ θ= " will have the 

block structure as 

 

1 12 1

21 2 2

1 2

( )

M

M

M M M

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

F CI CI
CI F CI

F θ

CI CI F

"
%

# % % #
"

 (3-14) 

where ,m nCI  is the cross term FIM between thm  and thn  pairs, which is evaluated at 

session 3.3.  
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3.1.3 Second Stage: Emitter Location Estimation 

In the first stage, we estimate TDOA/FDOA of some pairs of received signals. In the 

second stage, use these parameters to estimate the emitter location.  

 Signal Model  

Let kr  be the vector pointing from the emitter to the thk sensor kS , kr  be the 

Euclidean distance between them as 

 2 2( ) ( )k k k e k e k er x x y y= = − = − + −r s p  (3-15) 

ku  be the unit vector of kr  as k k kr=u r , ef  be the transmitted frequency of the 

transmitter, and c  be the speed of light. The vectors used in TDOA/FDOA signal models 

are illustrated in Figure 4.  

is

is�

js
js�

iu ju

ir jr

 

Figure 4 Vectors used in TDOA/FDOA equations illustration for one pair 

The signal model of  mτ  and mυ are given by 

 
( )

( )

1( )

( )

m m e i j

T Te
m m e i i j j

f r r
c
ff
c

τ

υ

τ

υ

= = −

= = −

p

p u s u s� �
 (3-16) 

The measurement vector m̂  in this stage is the estimation TDAO/FDOA vector of the 

first stage. Assume M pairs in the network. The vector form signal model is  
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 ˆ ( )e= +m f p e  (3-17) 

where 

 

[ ]
[ ]

1 1

1 1

1 1

ˆ ˆ ˆˆ ˆ

( ) ( ) ( ) ( ) ( )

T
M M

T
M M

T

e e e M e M ef f f fτ υ τ υ

τ υ τ υ

τ υ τ υ

=

= Δ Δ Δ Δ

⎡ ⎤= ⎣ ⎦

m

e

f p p p p p

"

"

"

 (3-18) 

( )m ef τ p  and ( )m ef υ p  are defined in (3-16). Noise vector e  has the Gaussian distribution 

with covariance matrix 1( )−=eC F θ , where ( )F θ  is defined as (3-14).  

 CRLB of  ep  

Therefore (3-17) is a deterministic signal plus Gaussian noise model, from (2-20) we 

get 

 
1

( ) ( )CRLB( ) ( )
T

e e
e

e e

−
⎡ ⎤∂ ∂

= ⎢ ⎥∂ ∂⎣ ⎦

f p f pp F θ
p p

 (3-19) 

We call ( )e

e

∂
=

∂
f pH

p
 Jacobin matrix and evaluated as 

 

1 1

1 1

1

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

e e

e e

e e

e e
e

e
MM e M e

e e

M e M e

e e

f f
x y

f f
x y

f f
x y

f f
x y

τ τ

υ υ

τ τ

υ υ

⎡ ⎤∂ ∂
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂
⎢ ⎥

∂ ∂ ⎡ ⎤⎢ ⎥
∂ ⎢ ⎥⎢ ⎥= = = ⎢ ⎥⎢ ⎥∂

⎢ ⎥⎢ ⎥∂ ∂ ⎣ ⎦
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂
⎢ ⎥

∂ ∂⎣ ⎦

p p

p p
G

f pH
p

Gp p

p p

## #  (3-20) 

where mG is the Jacobin matrix of the thm  pair of sensors, defined by ( )m e
m

e

∂
=

∂
f pG

p
 and 

calculated by 
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 ( )( )

T T
i j

T TT T
m j j j ji i i i

i jr r

⎡ ⎤−
⎢ ⎥

= −−⎢ ⎥−⎢ ⎥
⎣ ⎦

u u
G u s u su s u s � �� �  (3-21) 

Rewrite the FIM of ep  as  

 ( ) ( )T
geo e =J p H F θ H  (3-22) 

 Estimation Method  

We select Weighted Lease Square (WLS) method to estimate ep , which is to solve 

 { }
ˆ

ˆ ˆmin [ ( )] [ ( )]
e

T
e e− −

p
m f p W m f p  (3-23) 

where 1−= eW C  is the weighted matrix. It is obvious that the function vector ( )ef p  is not 

linear with respect to the emitter location vector ep . We need the iterative method (2-31) 

or (2-32) to solve (3-23). We chose Gauss-Newton method  based on: (i) Hessian matrix 

nG  is small enough to be negligible; (ii) Error term is small enough to make the sum 

term negligible; (iii) Inclusion of the sum term can sometimes de-stabilize the iteration; 

and (iv) For deducing the complexity of computation.  

 

3.2 Importance of Signal Model  

In chapter 2, we discussed that the parameter estimation procedure is to find an 

optimal algorithm which satisfies some rules, such as MMSE or MVU. It is statistical 

optimal, we need the statistical characteristics of the measured data. The implementation 

of optimal processing for the second stage of TDOA/FDOA localization requires an 

understanding of the probabilistic characteristics of the TDOA/FDOA estimates from the 

first stage. From (3-22), the evaluation of FIM of ep  needs the calculation of the FIM of 
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TDOA/FDOA, which is related with signal model of the emitter. In this session, we 

discuss how the signal model will affect the statistical characteristics and the optimal 

method. And the conclusion is one of the most important contributions of this dissertation.  

Much work has been done to derive optimal TDOA/FDOA estimation methods and to 

characterize the covariance matrix of the TDOA/FDOA estimates([6]~[20]). 

TDOA/FDOA results were first developed in the early 1970s for the case of passively 

locating underwater acoustic sources, where the accepted model for the signal is a 

stationary random process, which is almost always assumed Gaussian. Then 

TDOA/FDOA results were developed for the case of passively locating electromagnetic 

sources, such as radar and communication transmitters. But for the electromagnetic 

sources, most were deemed still as stationary random process. In fact, a deterministic 

signal model may be better to apply. 

 

3.2.1 Common and Uncommon Aspects of Acoustic and 

Electromagnetic Signals 

 Common Aspects for Both Acoustic and Electromagnetic Signals 

The model for two sampled passively-received baseband signals at two sensors is 

given by 

 
1

2

1 1 1

2 2 2

[ ] ( ) [ ]

[ ] ( ) [ ]

j nT

j nT

x n s nT e w n

x n s nT e w n

ν

ν

τ

τ

= − +

= − +
 (3-24) 

where ( )s t  is the complex envelope of the transmitted signal, 1τ  and 2τ  are delays and 1υ  

and 2υ  are Doppler shifts. The TDOA 12 1 2τ τ τ= −  and the FDOA  12 1 2υ υ υ= −  are the 
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parameters to be estimated from time-domain samples of these signals; we 

define [ ]12 12
Tτ υ=θ . For both the acoustic scenario and the electromagnetic scenario, the 

accepted modeling assumptions for the noises for 1[ ]w n  and 2[ ]w n  are: (i) They are zero-

mean stationary random processes; (ii) They are each Gaussian; (iii) They are 

independent of each other; and (iv) They are white for simplicity of our discussion.  For 

notational purposes we define: the signal [ ] ( ) ij nT
i is n s nT e ντ= − , 1 2

TT T⎡ ⎤= ⎣ ⎦x x x  and 

1 2( )
TT T⎡ ⎤= ⎣ ⎦s θ s s , where we explicitly show the dependence on the TDOA/FDOA 

parameter vector. This much is common between the acoustic and electromagnetic 

scenarios.  The differences arise in what is assumed about the model for the signal [ ]is n .   

 Acoustic Signal Model 

For the acoustic scenario the accepted modeling assumptions on [ ]is n  are: (i) It is a 

zero-mean stationary random processes; (ii) It is Gaussian; (iii) It is independent of each 

noise process; and (iv) It need not be assumed white, although that is a common special 

case that is considered. For this scenario: (i) The random process assumption is consistent 

with the erratic nature; (ii) The Gaussian assumption is motivated by the central limit 

theorem and makes the problem easily tractable; and (iii) The independence from the 

noises is reasonable based on physical considerations. 

 Electromagnetic Signal Model 

Signals emitted by electromagnetic sources tend to have much more regular structure 

than the erratic variations seen in acoustic signals made by ocean vehicles and therefore 

do not readily evoke the notion of random process.  A classic example of a stationary 

random process is a sinusoidal signal with uniformly distributed phase; despite the fact 
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that each realization of this process exhibits very regular structure it is a random process 

and it is stationary.  Similarly, radar pulse trains can be viewed as random processes for 

the very same reason: they can be modeled as having random transmission parameters 

(e.g., random time offset, random phase offset, etc.).  However, such signals – with their 

widely spaced pulses – can hardly be thought to be stationary processes (e.g., variance 

within a pulse is not equal to the variance between pulses).  Furthermore, they certainly 

cannot be modeled as Gaussian. In such a scenario it is best to consider the signal [ ]is n  to 

be a deterministic signal rather than a random signal. 

There is an immediate fundamental distinction between these two models.  When we 

consider the estimates of TDOA and FDOA, 12τ̂  and 12υ̂ , we typically wish to find 

unbiased estimates that minimize ( )2
12 12ˆE τ τ⎡ ⎤−⎣ ⎦  and ( )2

12 12ˆE υ υ⎡ ⎤−⎣ ⎦ , where it needs to be 

understood that when the signal is random these expectations are taken over the 

combined ensemble of signal and noise, such as the Bayesian MSE. When the signal is 

deterministic these expectations are taken over only the noise ensemble.  Thus, when the 

signal is random we are essentially finding the average squared error over all possible 

noises and signals; when the signal is deterministic we are essentially finding the average 

squared error over all possible noises for one specific signal.  

3.2.2 Fisher Information for the Two Scenarios 

From the above discussion we see that for both the acoustic scenario’s model and the 

electromagnetic scenario’s model the received data vector x  is Gaussian and has a 

Gaussian PDF.  The key distinction between these two scenarios that drives all the 

differences in FIM, CRLB and optimum processing is the manner in which the TDOA 
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and FDOA impact the parameters of the Gaussian PDF of data vector x . For the case of 

the acoustic scenario, the mean of x  is zero and the covariance matrix of x  has elements 

drawn from the autocorrelation function; from this we see that the covariance matrix of x  

depends on TDOA/FDOA, so we denote it as ( )C θ  to show the dependence.  In contrast, 

for the case of the electromagnetic scenario, the mean of x  is ( )s θ  which depends on 

TDOA/FDOA and the covariance matrix C  of x  is a block diagonal matrix of the two 

individual noise covariance matrices, and therefore does not depend on TDOA/FDOA.  

From this single distinction we see that the PDF for the acoustic case is 

 1
2 1 2

1 1( ; ) exp ( )
(2 ) det [ ( )] 2

T
ac Np

π
−⎡ ⎤= −⎢ ⎥⎣ ⎦

x θ x C θ x
C θ

 (3-25) 

and the PDF for the electromagnetic case is 

 [ ] [ ]1
2 1 2

1 1( ; ) exp ( ) ( )
(2 ) det [ ] 2

T
em Np

π
−⎧ ⎫= − − −⎨ ⎬

⎩ ⎭
x θ x s θ C x s θ

C
 (3-26) 

It is this difference that leads to significant differences in the structures of FIM as 

well as the maximum likelihood estimators for the two cases. For the acoustic scenario 

the mean of x  is zero and therefore does not depend on the parameter vector; thus the 

first term in (2-20) is zero and the FIM of TDOA/FDOA acJ  for the acoustic scenario is 

then given by 

 [ ] 1 11 ( ) ( )( ) ( ) ( )
2ac ij

i j

tr
θ θ

− −
⎡ ⎤∂ ∂

= ⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

C θ C θJ θ C θ C θ  (3-27) 

However, for the electromagnetic scenario the covariance of x  does not depend on 

the parameter vector; thus, the second term in (2-20) is zero and the FIM emJ  for the 

electromagnetic scenario is thus given by 
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 [ ] ( ) ( )( )
T

em ij
i iθ θ

⎡ ⎤ ⎡ ⎤∂ ∂
= ⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

s θ s θJ θ C  (3-28) 

Comparing (3-27) and  (3-28) we see that there is a significant difference between the 

structures of the FIM for the two cases.  Furthermore, as pointed out in several 

publications  the off-diagonal elements of the acoustic scenario FIM in (3-27) are zero 

under a mild assumption of large time-bandwidth product, thus indicating that for the 

acoustic scenario the optimal estimate of TDOA should be uncorrelated with the optimal 

estimate of FDOA.  However, the electromagnetic scenario FIM in (3-28) does not, in 

general, yield this uncorrelated TDOA/FDOA condition.  For example, for the case of 

white noise the result in (3-28) gives the cross term Fisher Information element as[25] 

 * *
1 1 2 22 212

1 2

1 1( ) Re ( ) ( ) ( ) ( )em
n n

jnTs nT s nT jnTs nT s nTτ τ τ τ
σ σ

⎧ ⎫⎪ ⎪′ ′= − − − + − − −⎡ ⎤ ⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭
∑ ∑J θ  (3-29) 

which in general is not zero. Thus, for the acoustic case we can expect that for a pair of 

sensors the optimal TDOA estimate is uncorrelated from the optimal FDOA estimate but 

that should not be expected in the electromagnetic case.  

An important impact of this comes when assessing the location accuracy that can be 

achieved from a set of TDOA/FDOA measurements obtained from M  pairs of sensors.  

Assuming an ML estimator for the TDOA/FDOA values, their estimates can be taken to 

be Gaussian and then the CRLB on the location estimate covariance becomes (3-22), 

where ( )F θ  is the FIM for all M TDOA/FDOA measurements. When performing studies 

of location accuracy, we should use the correct FIM ( )F θ  for TDOA/FDOA. 
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3.2.3 Maximum Likelihood Estimator for the Two Scenarios 

The MLE for a vector parameter θ  is defined to be the value that maximize the 

likelihood function ( ; )p x θ  over the allowable domain for θ . For the generalized 

Gaussian case, it is given by[1] 

 { } 1
1 1

ln ( ; ) ( )( ) ( )tr ( ) ( )[ ( )] [ ( )] [ ( )]
T

gg T

i i i i

p
θ θ θ θ

−
− −

∂ ⎛ ⎞ ⎡ ⎤ ⎡ ⎤∂∂ ∂
= − + − − − −⎜ ⎟ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦ ⎣ ⎦

x θ C θC θ μ θC θ C θ x μ θ x μ θ x μ θ (3-30) 

Notice that there are three terms in this result: one that depends on the sensitivity of 

the mean to the parameters and two that depend on the sensitivity of the covariance to the 

parameters.  Because the acoustic and electromagnetic scenarios are two different special 

cases of the generalized Gaussian scenario, we can use the result in (3-30) to find the 

result for each of these two special cases. 

For the acoustic scenario the mean of x  is zero and therefore does not depend on the 

parameter vector; thus, the partial derivatives of the log-likelihood function (LLF) are 

given just two terms from (3-30) as 

 { } 1
1ln ( ; ) ( ) ( )tr ( )ac T

i i i

p
θ θ θ

−
−∂ ⎛ ⎞ ⎡ ⎤∂ ∂

= − −⎜ ⎟ ⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎣ ⎦

x θ C θ C θC θ x x  (3-31) 

This result is well known in the passive sonar literature.  It is stated that for the 

TDOA/FDOA case the determinant term in the first line of (3-31) does not depend on the 

parameter vector; therefore, the first term in the second line of (3-31) can be ignored to 

give 

 { } 1ln ( ; ) ( )ac T

i i

p
θ θ

−∂ ⎡ ⎤∂
= − ⎢ ⎥∂ ∂⎣ ⎦

x θ C θx x  (3-32) 
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For the electromagnetic scenario the covariance of x  does not depend on the 

parameter vector; thus, the partial derivatives of the LLF are given by the second term in 

(3-30) 

 { } 1ln ( ; ) ( ) [ ( )]
T

em

i i

p
θ θ

−∂ ⎡ ⎤∂
= −⎢ ⎥∂ ∂⎣ ⎦

x θ s θ C x s θ  (3-33) 

Compare (3-32) and (3-33) shows that we should expect fundamental differences 

between the MLE for the acoustic and electromagnetic cases.  Surprisingly though, each 

case results in a structure that involves pre-filtering the received signals followed by 

cross-correlation. However, although both cases share this generalized correlator 

structure, the pre-filtering needed for each case is quite different.  For the acoustic case 

the filters depend on interplay between the signal power spectra density (PSD) and the 

noise PSD, whereas for the electromagnetic case the filters depend only on the noise PSD 

and not on the signal structure.   

 

The underlying assumption about the signal models (i.e., WSS Gaussian signal for the 

passive acoustic case and a deterministic signal for the passive electromagnetic case) 

leads to important differences in the results for the FIM, CRB, and MLE. The main 

differences are that: (i) The general structures of the FIM and CRB are significantly 

different; (ii) A key specific difference in the FIM/CRB structure is that unlike in the 

acoustic case, for the electromagnetic case the FDOA and TDOA estimates of a signal 

pair are likely to be correlated; (iii) For the electromagnetic case the MLE is an unfiltered 

cross-correlator whenever the noise is white (the acoustic case requires the signal to be 

white in order to remove the filters). Ignoring these differences can lead to incorrect 
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location accuracy assessments as well as improper choices when developing processing 

schemes.  

3.3 Characterizing TDOA/FDOA Performance for RF 

Emitters 

In chapter 2, we introduced the characteristics of an estimator and in the previous 

session, we discussed the importance of signal model when evaluating an estimator. We 

made some importance conclusions about electromagnetic signal used in the RF 

TDOA/FDOA system. In this session, we use these conclusions to characterize the 

TDOA/FDOA performance. 

3.3.1 Evaluating the FIM of One Pair 

Assume received signals 

 
1

2

1 1 1

2 2 2

[ ] [ ] [ ]

[ ] [ ] [ ]

j nT

j nT

x n s nT e n

x n s nT e n

ν

ν

τ ω

τ ω

= − +

= − +
 (3-34) 

where [ ]s nT  is the sampled transmitted signal, and [ ], 1,2i n iω =  is the AWGN received by 

sensor and assume independent of each other. Vector term of (3-34) is 

 
( , )

~ ( , )
i i i i

i iN
τ ν= +x s w

w 0 Σ
 (3-35) 

Let 

 
1 1 12

2 2 12
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( )
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τ
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= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= − = −

x s θ
x s θ

x s θ  (3-36) 

Then ~ ( ( ), )Nx s θ Σ , where Σ  is a block diagonal matrix of the two individual noise 
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covariance matrices such as 1 2( , )diag=Σ Σ Σ .  

Since we assume the RF signal is deterministic, according to (3-28)  

 [ ] 1
11

1,2 1,2

( )
T

τ τ
−⎛ ⎞ ⎛ ⎞∂ ∂

= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

s sF θ Σ  (3-37) 

Since 
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s s s
s

s s s
 (3-38) 

Substitute (3-38) into (3-37), we get 
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where ( )iF τ  is the Fisher Information of the Time of Arrive (TOA) of the thi  sensor, 

which is evaluated as [13] 
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 (3-40) 

where N is the number of samples, [ ]S k  is the DFT value. Following the same rule we 

get 
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and 
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where ( )iF υ  is the Fisher Information of the Doppler of Arrive (DOA) of the thi  sensor, 

which is evaluated as [13] 

 

2 2
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2 / 2
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/ 2
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∑
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 (3-43) 

And ( , )i iF τ υ  is the cross term Fisher Information which could be evaluated as (3-29). 

From the above, it is clear that FIM of θ  is the summation of FIM of TOA/DOA of 

each sensor of the pair as 

 1 1 2 2 1 2( ) ([ , ] ) ([ , ] )T Tτ υ τ υ= + = +F θ F F F F  (3-44) 

3.3.2 Evaluating the FIM of Two Pairs Sharing One Sensor 

Three sensors make two pairs as in Figure 5.  The vector form of received signal 

samples is as (3-35) for 1,2,3i = . 

1s
1s�

2s

2s�

3s
3s�

Pair
-2

 

Figure 5 Three sensors and two pairs 
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 36

Then ~ ( ( ), )Nx s θ Σ , where Σ  is a block diagonal matrix of the three individual noise 

covariance matrices such as 1 2 3( , , )diag=Σ Σ Σ Σ . FIM of θ  will have the following 

structure 

 1

2

( ) ( )
( )

( ) ( )
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

F θ CI θ
J θ

CI θ F θ
 (3-46) 

According to (3-28) the cross term FIM between pair-1 and pair-2 can be evaluated as 
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Since 

 

1 1

1,2 1

2 2

1,2 1,2 2

3

1,2

τ τ

τ τ τ

τ

⎡ ⎤∂ ∂⎡ ⎤⎢ ⎥ ⎢ ⎥∂ ∂⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂∂ ⎢ ⎥= = ⎢ ⎥∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ⎣ ⎦⎣ ⎦

s s

s ss

0s

 (3-48) 

and 
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 (3-49) 

Substitute (3-48) and (3-49) into (3-47), we get 

 [ ] 11 1
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Following the same rule to evaluate the other items of we get ( )CI θ , it is not hard to 

get 



 37

 2( ) =CI θ F  (3-51) 

Therefore the cross term FIM between pairs is the same as the FIM of the shared 

sensor itself. The FIM of θ  is 

 1 2 21

2 2 32

( ) ( )
( )

( ) ( )
+⎡ ⎤⎡ ⎤

= = ⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎣ ⎦

F F FF θ CI θ
J θ

F F FCI θ F θ
 (3-52) 

From the above discuss, the FIM of TDOA/Foes could be calculated for the 

combination of the FIM of each sensors TOA/DOA itself. That is consistent with Dr. 

Chen’s assessment [23]. 

 

3.4 Characterizing Location Performance for RF 

Emitters  

In session 3.3, we discussed about how to compute the FIM of TDOA/FDOA. And it 

is obvious the estimation accuracy is only related with the received signal quality. But the 

accuracy of emitter location depends on many items, not only the received signal quality 

but also the geometry properties of sensors and emitter. The second aspect is the 

motivation of part of this dissertation: to exploit the geometry characteristics of location 

estimation and based on them to find optimal pairs.  

The location estimation is subject to various types of errors. Emitter location is 

estimated by some measurements, such as times of arrivals, frequencies of arrivals. The 

general signal model of any measurement is 

 ( , , )em f= p s s�  (3-53) 
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where s  and s�  is the vector of participated sensors’ positions and velocities. (3-53) 

defines a surface on which ep  lies. The differential of (3-53) with respect to ,  and ep s s�  

gives 
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p s s
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�
�

 (3-54) 

Errors in the measurement m , s  and s�  will incur an error in the estimation of ep . Take 

variance of both sides of (3-54) gives  

 2 cov( ) cov( ) cov( )
T T T T

m e
e e

f f f f f fσ
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p s s
p p s s s s

�
� �

 (3-55) 

This gives an overview of how all these measurements errors play in the geo-location 

estimation accuracy.  

For the TDOA/FDOA methods we choose, and assume two dimensional, the 

intersection of the two curves is a random variable whose statistics is induces by statistics 

on the measured quantities, such as the accuracy of TDOA/FDOA estimates, the accuracy 

of sensors locations and velocities. Figure 6 shows the randomness of the intersection of 

two TDOA hyperbolas. The bold line is the true hyperbola, the “…” line is the 

measured/estimated hyperbola from the first pair, and “---” is from the second pair. The 

randomness can be evaluated by the estimation variance. We discuss all the related 

aspects about the location estimation accuracy in this session.  
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Figure 6 Randomness of the intersection of two TDOA hyperbolas 

3.4.1 Emitter Location Accuracy as a Function of TDOAs and 

Sensor States Measurements 

One TDOA value is a function of emitter location and two sensors positions as 

 ( )1 2 1 2
1( , , )ef
c

τ = = −p s s r r  (3-56) 

where k e k= −r p s . One this function can define a hyperbola, and two hyperbolas define 

an intersection. For the sensors as in Figure 6, the two functions are 
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 (3-57) 

Taking differentials of (3-57) and let 1 1 2

TT T⎡ ⎤= ⎣ ⎦q s s  and 2 3 4

TT T⎡ ⎤= ⎣ ⎦q s s , then 
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 (3-58) 

Factor edp  into two parts as one is in the direction of the normal of the surface defined 

by mf  and noted as ed ⊥p  , which is the direction as m ef∂ ∂p , the other one is 

perpendicular to the normal vector and noted as edp& . The fact oration is illustrated in 

Figure 7. 
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edp

ed ⊥p edp&

ep

 

Figure 7 Fact orating edp  into two parts 

Then edp  is factored with 1f  and 2f  respectively as 
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 (3-59) 

According to vector inner product theory (3-58) becomes 

 1 1 1 1

2 2 2 2

d

d

τ

τ

= ∇ ⋅ Δ +∑
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h n

h n
 (3-60) 

Where for notation simplicity let m m ef∇ = ∂ ∂h p , m
m ed ⊥Δ =n p  and 

( ) ( )
4

1

T
m m m m m i i

i

f d f q q
=

∑ = ∂ ∂ = ∂ ∂∑q q , where iq  is corresponding to sensors position 

parameters.  

Assume the measurements of mτ  and is  are made. Errors of there measurements will 

induce an error in the estimate of the intersection where the emitter supposed to be 

located. Let 2
mnσ  be emitter location estimation variance on the direction of the normal to 

the surface of hyperbola (specified by mf ) at emitter location. 2
mτ

σ  be the TDOA error 

variance. 2
iqσ  be the variance of sensors position measurements (since for TDOA only, do 

not need velocity). And assume they are independent of each other. Rewrite (3-60) as the 

variance form 
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Since 
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Then  
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Therefore 
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Computation the two important measurements of  
ep

C  are got as 
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Put into the geometrical factors and define a new induced vector concept as 

cos( 2) sin( 2)
sin( 2) cos( 2)

π π
π π
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x x , which means ⊥x  is generated by count-clockwise rotating 

x  by 2π  degree. Define angles as following 

(i) ( ) ( )1 1 2 2 3 4,  and ,θ θ= ∠ = ∠r r r r  

(ii) ( )( , ) ,i j i jα ⊥= ∠ r r  

Then after simplification and computation (3-67) becomes  
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 (3-68) 

From (3-68), the variance of estimation errors is a complex combination of both 

measurement factors (all σ  values) and geometrical factors (angles). Based on the 

relationship of all these angles, trace( )ΔnC  may be get more simplified, but even further 

simpler there is not a clear optimal relationship between the trace( )ΔnC  and some 

specified parameters. It is also for the case of determinant( )ΔnC .  And there are trade-off 

among these geometrical factors. 

3.4.2 Emitter Location Accuracy as a Function of FDOA and 

Sensor States Measurements 

One FDOA value is a function of emitter location and two sensors positions and 

velocities as 
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One this function can define a curve, and two FDOA measurements can define an 

intersection, for the sensors as in Figure 6, the two functions are 
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 (3-70) 

Following the same discussion as TDOA case, we can also get the similar expression 

as (3-65) with different H  and ΔnC  matrices as 

( ) ( )
( ) ( )

2 22 2
1 1 1 1 2 2 2

2
1 2 1 2 1 1 2 1 1 2 2

sin sin

            2 cos cos cos cos cos sin sin

α α

θ α α α β α β

∇ = +

− − −

h s r s r

s s r r

� �

� �
(3-71) 

The angles are defined as following and illustrated in Figure 8.  

 (i) ( ) ( )1 1 1 2 2 2,  and ,α α= ∠ = ∠s r s r� �  

(ii) ( ) ( )1 2 1 2 1 2,  and ,β β= ∠ = ∠s r s r� �  

1s� 1s�
2s�

2s�

 

Figure 8 Angles illustration for FDOAs system 

The expression of H  is more complicated with many angles made by sensors’ 

velocities and positions, between sensor itself or cross one. ⊥x  is defined in last section. 

Define angles as following 

(i) ( ),i i iα = ∠ r s�  
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(ii) ( )( , ) ,i j i jγ ⊥= ∠ r r  

(iii) ( )( , ) ,i j i jλ ⊥= ∠ r s�  

(iv) ( )( , ) ,i j i jβ ⊥= ∠ s s� �  

Based on these definitions, H  is given as  

 (1,3) (1,4) (2,3) (2,4)
2 2

1 2

f f f f− − +
=

∇ ⋅ ∇
H

h h
 (3-72) 

where  

 ( , ) ( , ) ( , ) ( , ) ( , )cos cos cos cos cos cos cos cosi j
i j i j i j i i j j j i i j

i j

f α α γ α λ α λ β⎡ ⎤= − − +⎣ ⎦
s s

r r

� �
(3-73) 

Totally there are sixteen angles. Even though some of them may be represented by 

some others, (3-72) is still a long expression with many items. Put (3-71) and (3-72) into 

(3-67) will get two more long expressions, we do not need to give the long expression at 

here.  

The objective of this session is to give an explicit expression about how are all the 

measurements accuracy and geometrical properties related with the emitter location 

accuracy. The relationship in general form is given by (3-67). And we checked two 

special case of (i) two TDOAs and (ii) two FDOAs. The purpose of these derivations is 

not to give a simple relationship between the accuracy and any related parameter. It is to 

give an overall insight about what will reflect our estimation accuracy. In the following 

chapters we are going to discuss more about some specified errors and give out optimal 

or sub-optimal solutions to solve the unexpected uncertainties.  
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3.5 Appendix 3A-Convergence of Gauss-Newton Least 

Square Method 

In the second stage of the data processing we use the iterative lease square method to 

estimate emitter location. Given an initial reference estimation of ep , iteratively update 

by (2-32). We need to consider the convergence problem.  

Least Square (LS) procedure estimate model parameters θ  by minimizing the LS 

error criterion, or called cost function 

 ( ) [ ( )] [ ( )]TJ = − −θ x s θ x s θ  (3-74) 

In general, ( )s θ  is a N-dimensional nonlinear function of θ .  

The Newton-Raphson iteration method is to linearize the differentiation of J , which 

needs the first-order and second-order partials of ( )s θ  with respect to θ . The Gauss-

Newton iteration method is to linearize ( )s θ  about some nominal 0θ , which only needs 

the first-order partial of ( )s θ  with respect to θ . The iterative equation is 

 1
1 [ ( ) ( )] ( )[ ( )]T

k k k k k k
−

+ = + −θ θ H θ H θ H θ x s θ  (3-75) 

where 

 ( )[ ( )] i
ij

j

s
θ

∂
=

∂
θH θ  (3-76) 

For small h  the Taylor expansion of ( )s θ  and keep up to the first order derivative 

item is 

 ( ) ( ) ( )k k k+ ≈ +s θ h s θ H θ h  (3-77) 
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For notation purpose write ( )ks θ  as 
kθ

s  and ( )kH θ  as 
kθ

H . Inserting (3-77) into 

(3-74) we see that 

 
( ) ( ) ( )

              ( ) ( ) 2( )
k k k k

k k k k k k

T
k

T T T T

J + = − + − +

= − − + − +

θ θ θ θ

θ θ θ θ θ θ

θ h x s H h x s H h

x s x s x s H h h H H h
 (3-78) 

Let 

 
( ) ( )

k

kL J= +
= − θ

h θ h
y x s

 (3-79) 

then 

 ( ) 2
k k k k

T T TL J= + +θ θ θ θh y H h h H H h  (3-80) 

The gradient and the Hessian of ( )L h  with respect to h  are 

 
( ) 2 2

( ) 2
k k k

k k

T T

T

L

L

′ = +

′′ =

θ θ θ

θ θ

h H y H H h

h H H
 (3-81) 

In TDOA/FDOA emitter localization system, 
kθ

H  can be calculated as (3-20). So 

generally the columns of 
kθ

H  are independent, therefore ( ) 2
k

rank =θH , 
kθ

H  is full rank. 

So ( )L′′ h  is positive definite. ( )L h  has a unique minimizer and can be solved as 

 * 1( )
k k k

T T−= − θ θ θh H H H y  (3-82) 

and 

 * *( ) ( ) ( )T
k k kJ J J ′+ ≈ +θ h θ h θ  (3-83) 

Since the gradient of ( )kJ θ  is  

 ( ) ( )
k kkJ ′ = −θ θθ H x s  (3-84) 

then 
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* *

1

( ) ( )

              ( ) ( ) ( )

              ( ) ( ) 0

k k

k k k k k k

k k

T T
k

T T T

T

J
−

′ = −

= − − −

= − − − <

θ θ

θ θ θ θ θ θ

θ θ

h θ h H x s

x s H H H H x s

x s x s

 (3-85) 

Therefore 

 ( ) ( )k kJ J+ <θ h θ  (3-86) 

So h  is a descent direction of J . So updating θ  by 1k k+ = +θ θ h , finally the solution 

can converge to the optimal one. 

 

In this chapter, we (i) Give basic background about emitter location estimation and 

discuss why we choose TDOA/FDOA methods in this dissertation; (ii) Talk about the 

basic procedures of the localization; (iii) Exploit the importance of signal model and get 

the important and fundamental insight about the FIM/CRLB and MLE, which is one of 

this dissertation’s contribution; (iv) Based on the results we get, compute the 

characteristics of TDOA/FDOA estimation; (v) Develop the geometrical factors 

importance in the localization, which is the motivation of the next chapter. 
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4 Network Management---FIM Based Sensor 

Selection and Pairing 

Briefly, the localization procedure is: the full set of sensors is tasked to 

simultaneously intercept signal data in a specified frequency band and then cooperatively 

share data to detect the presence of an emitter and then to locate it.  After data collection 

at the sensors, they send a small amount of data to a central node where the data sets are 

processed to determine which sensors detected data from the same emitter of interest. 

And based upon this small amount of data, it is possible to determine a rough estimate of 

the emitter location, which will be used as initial estimation at iterative lease-square 

estimation.  

On the basis of this initial, small amount of shared data from the remaining subset of 

participating sensors, it is also possible to assess the impact of the relative emitter-sensor 

geometry on the location processing task, thus allowing subsequent processing to be 

optimized with respect to the geometry and error sources.  Thus, the central node then 

uses knowledge of the current positions and trajectories of the remaining sensors to 

further reduce the participating subset based on the quality and the error sensitivity of 

their data sets. For example, one sensor may have high-quality data (e.g., SNR, Fisher 

information, etc.) but its position and trajectory give it a high susceptibility to non-noise 

error sources (e.g., GDOP, sensor vibrations, navigation errors, etc.), another sensor 

could have low-quality data but have low susceptibility to error sources, etc.  By 

eliminating sensors that have negligible usefulness to the final outcome of the task it is 

possible to reduce the amount of network communication resources needed to accomplish 
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the task.  Further reduction in the needed communication resources is then achieved 

through location-optimized compression when this final subset of participating sensors 

shares its data to support the location-estimation tasks[23].  Then, location processing is 

completed using algorithms specifically designed to mitigate the impact of the error 

sources.  If at this point the accuracy of the location estimate is desired to be further 

improved, it is possible to determine optimal trajectories for the selected sensor subset in 

order to minimize their sensitivities to GDOP, vibration, etc. during subsequent data 

collection . We briefly discussed this issue in chapter-6.  We aim to provide a 

comprehensive method of maximizing the effectiveness of a sub-set of networked sensors 

by considering the network-wide setting in which the sensors work.  The following 

sections provide the details upon which these ideas are based. 

 

4.1 Optimal Criterion 

We know the Cramer-Rao Lower Bound of  a parameter is depended on the signal 

model.  The signal model is related with both the parameters assumed known and the 

ones to be estimated. Assume a signal model is a function of both  α  and β  as ( ; )s α β , 

where α  is the vector to be estimated and β  is the system parameter vector which is 

assumed known and can be modified. The natural and ultimate choice of criteria to 

optimal an estimation algorithm relies on their error covariance matrix which is lower 

bounded by the CRLB matrix, which is given in chapter 2. For example, if 

1 2CRLB( ; ) CRLB( ; )<α β α β , we can say that the signal model based on 1β  is better than 

the one on 2β  at the estimating of α  point of view. For vector case, “<” means 
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2 1CRLB( ; ) CRLB( ; )−α β α β  is a positive definite matrix. So if we can choose β  to get 

minimal CRLB of α , the optimal problem will be given as 

 { }* arg min some scalar value function of CRLB ( ; )= αβ
β α β  (4-1) 

Since for the vector estimator, the CRLB is a matrix, we need some scalar value 

function to evaluate the minimal of a matrix, such as eigen-values, trace or determinant.  

4.1.1 Covariance Matrix and Error Ellipsoid 

The covariance matrix of estimation errors can be visualized in the space of errors. 

Assume θ̂  is a 1p×  unbiased estimated vector and it is Gaussian with zeros mean and 

covariance matrix 
θ̂

C . Then the PDF of θ̂  is given by 

 1
ˆ1/ 2

ˆ

1 1ˆ ˆ ˆ( ) exp ( ) ( )
2(2 )

T

p
p

π
−⎧ ⎫= − − −⎨ ⎬

⎩ ⎭θ

θ

θ θ θ C θ θ
C

 (4-2) 

The equal height contours of this PDF are given by the values of estimation error 

vector ˆ ˆΔ = −θ θ θ  such that 

 1
ˆ

ˆ ˆT k−Δ Δ =
θ

θ C θ  (4-3) 

From [17], choosing the value of k , such that 

 2 ln(1 )ek P= − −  (4-4) 

where eP  is the probability that ˆΔθ  will lie inside the ellipsoid specified by (4-3). For 

example, if we want to see the ellipsoid that includes 50% estimates errors, then 

2 ln(1 0.5)k = − − . The size and orientation of the ellipsoid can be described in terms of 

eigenvalues and eigenvectors of the symmetric p p×  matrix 
θ̂

C . Let the eigen-

decomposition of 
θ̂

C  be 
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 ˆ
1

p
T

i i i
i
λ

=

=∑θ
C v v  (4-5) 

where iλ  is the eigenvalue, iv  is the corresponding eigenvector.  

For visualizing, assume 2p =  and ˆ ˆ ˆ[ , ]T
e ex y=θ . Therefore the vicariate covariance 

matrix can be expressed as 

 
2
ˆ ˆ ˆ,

ˆ 2
ˆ ˆ ˆ,

e e e

e e e

x x y

x y y

σ σ

σ σ

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

θ
C  (4-6) 

and 

 
( )
( )

2 2 2 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ1 ,

2 2 2 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ2 ,

1 ( ) 4
2
1 ( ) 4
2

e e e e e e

e e e e e e

x y x y x y

x y x y x y

λ σ σ σ σ σ

λ σ σ σ σ σ

= + + − +

= + − − +
 (4-7) 

The error ellipse of [ ]ˆ ˆ T
e ex yΔ Δ  is as in Figure 9. The lengths of the principle axes 

are proportional to the value of the eigenvalues. And the directions of the principle axes 

are along with the eigenvectors. It is clear, the smaller iλ , the more accurate of the 

estimates, on the contrary, the larger iλ , the wider estimation error range will be.  

 

ˆexΔ

ˆeyΔ

2kλ 1kλ

1v

2v

 

Figure 9 Error ellipse and coordinate axes in the 
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 relationship with eigenvalues and eigenvectors. 

4.1.2 Criterion Selection 

There are two normally used measurements to measure the size of an ellipse, one is 

the area and the other one is the perimeter. The calculations of the ellipse in Figure 9 are 

given by 

 1 2

1 2

Area

Perimater 2

k

k

π λ λ

π λ λ

=

≈ +
 (4-8) 

From matrix theory, the determinant of a matrix is equal to the product of the 

eigenvalues, and the trace of a matrix is equal to the summation of the eigenvalues. So 

the two measurements of the ellipse specified by 
θ̂

C  are proportional to the two 

important properties of 
θ̂

C  as 

 
ˆ

ˆ

Area Determinant( )

Perimeter Trace( )

∝

∝
θ

θ

C

C
 (4-9) 

The inverse of Fisher Information Matrix is the CRLB matrix, which is the “smallest” 

matrix (as indicated in (2-17) ) that an unbiased estimator can get. From chapter 3, the 

FIM of emitter location is ( ) ( )T
geo e =J p H F θ H , which can be expended as 

 
1 1 1

( ) ( ) ( )
M M M

T T
geo e m m m m n mn m n

m m n m= = = +

= + + +∑ ∑ ∑J p G F G G G CI G G  (4-10) 

The matrices are defined in (3-14) and (3-20). The first summation in (4-10) is the 

combination of each pair independently and the second one is due to the cross term FIM, 

if there is some sensors participated in more than one pair.  

We need to optimize CRLB, which is the inverse of FIM. The expression of inverse 

of (4-10) is complicated even if there is only the first summation. So instead of discussing 
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the optimal eigenvalues of CRLB, we will discuss the eigenvalues of geoJ  to avoid the 

complexity of calculating 1
geo
−J .  Define the eigen-decomposition of geoJ  as 

 
1

1p
T

geo i i
i iλ=

=∑J v v  (4-11) 

To increase the accuracy of the estimates is equal to reduce the size of the error 

ellipse. But which measurement we should use to be our criterion? Since the CRLB is the 

inverse of FIM, based on matrix theory; the eigenvalues of them are reciprocal of each 

other. Then 

 1

1

p
T

geo geo i i i
i

λ−

=

= =∑CRLB J v v  (4-12) 

Since geoJ  is positive definite matrix, all its eigen-values 1 iλ  are positive. It is easy 

to show that minimizing 1

1

det( )
p

geo i
i

λ−

=

=∏J  is equivalent to maximizing 

1

det( ) 1
p

geo i
i

λ
=

=∏J . So the decrease of the area of CRLB ellipse is equal to the increase 

of the FIM ellipse.  

Is that also true for the perimeter? Let 
1

trace( ) 1/
p

geo i
i

λ
=

=∑J  and 1

1

trace( )
p

geo i
i

λ−

=

=∑J . 

Using the Cauchy-Schwarz inequality [3] gives 

 
1

1
1

1 1

1/ tr( )tr( )
p p

p i i geo geo
i i

p

p
λ

λ λ λ λ

λ

−

= =

⎡ ⎤
⎢ ⎥

⎡ ⎤= ≤ =⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑ J J" #  (4-13) 

This gives 1 2tr( ) / tr( )geo geop− ≥J J . Thus the maximization of tr( )geoJ  tends to bring the 

minimization of 1tr( )geo
−J .  
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Based on matrix theory and (4-10) 

 ,
1 1 1

tr( ) tr( ) tr( )
M M M

geo m m n
m m n m= = = +

= +∑ ∑ ∑J J J  (4-14) 

where T
m m m m=J G FI G  and , ( ) ( )T

m n m n mn m n= + +J G G CI G G . So if we choose trace of geoJ  

as our optimal criterion, we can discuss pair-wise.  

But the determinant of geoJ  generally does not have the formula as (4-14), there is not 

an explicit expression of the determinant of the summation of matrices.  The Minkowski 

Inequality [3] says for (4-10) 

 ,
1 1 1

det( ) det( ) det( )
M M M

geo m m n
m m n m= = = +

≥ +∑ ∑ ∑J J J  (4-15) 

with equality if and only if  all the mJ  and ,m nJ  are positively linearly dependent. It is 

complicated if we can not separate pairs.  

From the above discuss, there is a trade off between choosing the determinant or the 

trace of  geoJ  to be our optimal criterion. (i) For determinant, maximize the determinant 

of geoJ  definitely minimize the determinant of 1
geo
−J , but the expression of det( )geoJ  with 

respect to the parameters which we are going to optimal is complicated and hard to 

discuss; (ii) For trace, based on (4-14), the trace of  geoJ  can be separated pair-wised, 

which makes the optimal method done inside each pair, but the maximal of tr( )geoJ  can 

not guarantee the minimal of 1tr( )geo
−J , even though it always has the tendency.  We 

choose trace as our criterion, since normally the structure of geoJ  will satisfy the 

maximization of tr( )geoJ  bring the minimization of 1tr( )geo
−J , and pair-wised optimization 

brings more flexibility.  
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4.2 Diversity of Sensor Selection and Pairing 

Each element of Fisher Information Matrix geoJ  is a function of both emitter location 

ep  and sensor navigation data s  and s� , so is the trace of geoJ . Our objective is to select 

an optimal subset of sensors and pair them as well. The optimal function is given by 

 { } ( )( ){ }*

subset
subset of sensors  = arg max trace subsetgeoJ  (4-16) 

The computation of geoJ  depends on how the sensors are cooperated. There are many 

ways to manage a set of sensors according to the sensor network types. We propose 

various approaches to this problem and discuss trade-offs between them, for example (i) 

assumes that the sensors have pre-paired and share their data between these pairs; sensor 

selection then consists of selecting pairs to optimize performance while meeting 

constraints on number of pairs selected;  (ii) consists of optimally determining pairings as 

well as selections of pairs but with the constraint that no sensors are shared between pairs;  

(iii) consists of allowing sensors to be shared between pairs; and etc. 

4.2.1 Network Types 

Wireless sensor network is the network that sensors are cooperatively monitor 

physical or environmental conditions. So the sensors need to be grouped together under 

some constraints. The TDOA/FDOA measurements need a set of sensors selected and 

paired. There are many ways to cooperate the sensors and let them paired. The sensors 

are connected according to some requirements, such as distance, effective signal noise 

ratio, efficiency and etc. We define the three normally practical types of sensor network 

as following and illustration is in Figure 10.  
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Type-I: No Sensor Sharing (a pair that does not share any of its sensors with any 

other pairs is called “independent pair”.);  

Type-II: De-Centralized Sensor Sharing (some sensors are participated in more than 

one pair, and there is no center sensor.); 

Type-III: Centralized Sensor Sharing (a common reference/fusion/center sensor is 

used, all the other sensors are paired with it.) 

 

Figure 10 Three type of sensor networks 

Based on the different network types, the FIM of geo-location will have different 

structure which is discussed later. 

4.2.2 Two Pairing Scenarios 

Besides the specified sensor network types we need to consider, there are also two 

different scenarios for the given sensors: (i) pre-paired sensors, in which all the sensors 

are already paired, we can not change their pairing topology; (ii) free sensors, a sensor 

that could be paired to any other sensors is called “free sensor”, we can pair them with 

more flexibility. In the following sessions, we discussed the sensor selections algorithms 

for the three network types and two scenarios. 
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4.3 Sensor Selection and Pairing Strategies 

In the previous session, we have discussed about the diversity of pairing strategies, in 

this session we give solutions for them. 

4.3.1 Pre-Paired Sensors 

When sensors are pre-paired, since we could not depart the pairs and re-pair them, we 

select pairs instead of sensors. We do not have much flexibility to pair the sensors. The 

TDOA/FDOA pair-FIM mF  and cross-FIM ,m nCI  are evaluated based on the paring and 

sensor sharing topology. 

(1) Type-I: No Sensor Sharing 

When no sensor is shared all the cross-FIM ,m nCI  is zero. The mF  is evaluated 

individually for each pair. Then θF  of all TDOA/FDOA estimation will have the block 

diagonal structure as 

 

1

2

M

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

θ

F 0 0
0 F 0

F

0 0 F

"
%

# % % #
"

 (4-17) 

FIM of geo-location (4-10) becomes 

 
1

( )
M

T
geo e m m m

m=

=∑J p G F G  (4-18) 

The problem of selecting K pairs from M pairs is specified by 

 
{ } ( ) ( ){ }

1

*
1 1 1 1 1, ,

1

, , arg min trace

           . .   ,    {0,1}
M

T T
M M M M Mp p

m M m

p p p p

s t p p p K M p

⎡ ⎤= ⋅ + + ⋅⎣ ⎦
+ + = < ∈

G FG G F G
"

" "

" "
 (4-19) 

It is to select the K pre-paired sensor pairs that have the largest values of trace( )mJ . 
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To demonstrate the capability of the FIM-based pair selection methods we present the 

simulation result for the case of locating an emitter with a random lay-down of 10 pair of 

sensors as in Figure 11. The system arrangement is: the emitter is located at the origin, 

sensors are randomly placed in the range of 20 10km km× , the distance of each pair is 

under 2km, and the norm of velocity is smaller than 300km/s.  

The sensor selection proceeds as follows. Each sensor intercepts the emitter signal 

data at signal to noise ratio in the range of 10~15dB (where the SNR variation is assumed 

to depend quadratic ally on the range to the emitter). The full set of sensors share a very 

small amount of data to obtain a rough estimate of the emitter location; alternatively, we 

could consider the case where the system is cued by some other sensor system that 

provides a rough location that is to be improved using our sensors. Based on the initial 

location estimation and small amount of data, a central sensor (or other control center) 

will do the selection job. The selected pairs then participate the following tasks. 

Figure 12 shows the performance of sensor selections without sensor sharing for the 

pre-paired case. We select 2 to 10 pairs shown on the horizontal axis. The vertical axis 

shows the normalized dB value standard deviation (normalized by the largest standard 

deviation) of the estimated geo-location distance error versus the number pairs selected. 

It is the trace of the covariance matrix of estimation errors, which is the variance of the 

distance from the estimation to the true emitter location physically. The upper curve (-Δ-) 

shows the performance for the original selected pairs; the lower curve (-O-) shows the 

performance when using the FIM-based selection method discussed above.  Not 

surprisingly, the ability to select the pairing on the basis of the sensor geometry and the 
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rough emitter location enables better performance. And for the layout as in our simulation, 

only 2 pairs selection can achieve the accuracy as the 8 pairs selected originally.  

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x 10
4

-10000

-8000

-6000

-4000

-2000

0

2000

1

2

3

4 5

6

7

8

9

10

1112

13

14

15

16

17

18

19

20

X Position (meter)

Y
 P

o
si

ti
o

n
 (

m
et

er
)

 

Figure 11 Layout of 10 pairs of sensor 
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Figure 12 Simulation result for FIM-based sensor pairs selection w/o sharing.  

The Standard deviation is normalized and taken the dB value. 
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 (2) Type-II: De-Centralized Sensor Sharing 

Under this type, the network looks messy. Some pairs are independent; some sensors 

are participated in more than one pair. For type-I, we can treat the sensors pair by pair, 

since there is no correlation when estimating TDOA/FDOAs. Here we define a group of 

sensors as a sensor set by: A set is defined by a group of sensors which do not have 

connections with any other sensors outside the group and do not have independent pairs 

inside the group. For the sensor network in Figure 10-(b), the sets are defined as in Figure 

13. Set-1 is grouped by sensor-1,2, and 4; Set-2 is grouped by sensor-3,5,6 and 7. 

S4

S1 S2

S5

S3

S7

S6

Pair
-1

Pair-2

Pair-4Pa
ir-

3

Set-1

Set-2

 

Figure 13 Sensor sets example 

We calculate the FIM of geo-location of each set. For example, the evaluation of set-1 

is 

 , 1 1 1 1 2 2 2 1 2 1,2 1 2( ) ( )T
geo set− = + + + +T TJ G F G G F G G G CI G G  (4-20) 

The problem of selecting K  sensors from M sets is specified by 

 
1

1 , 1 ,, ,

1 1 1

max { ( )}

 . .   ,    {0,1}
         is the number of sensors in set-i

N
geo set M geo set Mp p

M i

i

trace p p

s t p n p n K N p
n

− −⋅ + + ⋅

⋅ + + ⋅ = < ∈

J J
"

"

"  (4-21) 

The simulation procedure and result are similar to the type-I, so we skip the result 

figures. 

(3) Type-III: Centralized Sensor Sharing 
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For the pre-paired case, the central sensor is already specified and the remaining N-1 

sensors pair with it to form N-1 centralized pairs. The center one must be selected. How 

to select the remaining K-1 sensors? They are all correlated when estimating 

TDOA/FDOAs for each pair. There are 1
K
NC −  possible ways to select K pairs. For each 

selection, for illustration renumber the pair number as in Figure 14.  

 

Figure 14 For each group, renumber each pair 

The FIM of each group will have the following structure 

 ,
1 1 1

( ) ( )
K K K

T
geo k k k k m n mn m n

k m n m= = = +

= + + +∑ ∑ ∑TJ G F G G G CI G G  (4-22) 

Assume thr  sensor is the reference one. Also the simulation procedure and result are 

similar to the type-I, so we skip the result figures. 

From all above, for the pre-paired sensor networks, all we can do is calculating the 

FIM following some rules and select pairs. There is not much flexibility when doing the 

sensor selection and pairing. 

4.3.2 Free Sensors 

We are given a set of sensors and asked to optimally choose a subset and the optimal 

pairing them as well. In this case the pairing provides more flexibility to enable better 

performance but it introduces additional complexity as well. We develop the solutions for 

both no sensor sharing case and allowed sensor sharing case. 
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(1) No Sensor Sharing 

Pair the free sensors without sharing any one of them. For N sensors, there could be 

N/2 independent pairs. To choose K (≤N/2) pairs is a time-consuming work if we 

enumerated all the possible solutions. For example, N=10, there are 2
10 45C = possible 

pairs, and ( 1) ( 3) 3 1 945N N− ⋅ − ⋅ ="  possible ways to make 5 pairs as a subset. Another 

example, for sensor-1,2,3 and 4, the 2 pairs could have the following solutions: 

(i) (1,2) and (3,4) 

(ii) (1,3) and (2,4) 

(iii) (1,4) and (2,3) 

Fortunately, since there is no sensor sharing and we select sensors pair by pair, the 

selection of next pair will not affect the selection of the previous selected pairs. It is like a 

kind of tree structure. We can use the Integer Dynamic Programming method to optimal 

the selection. For this paper, we used ‘Branch and Bound’ [5] method to choose one pair 

at each step. 

The objective function is as 

 thgeo, k pair in the solutionall feasible solutions 1

max trace( )
K

k=

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ J  (4-23) 

Feasible solution means no sensor sharing in the solution and the number of sensors is as 

required. 

An detailed example of branch and bound method is given in more detail in 

Appendix-4A. 

Simulation results for the case of locating an emitter with a random lay-down of 14 

sensors, all the parameters used are as in the pre-paired case. Figure 12 shows the 
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performance of sensor selection and pairing without sensor sharing for the free sensors 

case. We select 2 to 7 pairs, shown on the horizontal axis. The vertical axis shows the 

normalized dB value standard deviation of the geo-location distance error standard 

derivation versus the number pairs selected. The upper curve (-Δ-) shows the 

performance for the selected pairs under natural order as (1,2), (3,4) and (5,6)……; the 

lower curve (-O-) shows the performance when using the FIM-based pairing method 

discussed above.   
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Figure 15 Simulation result for 14 free sensors selection and pairing. 

The standard deviation is normalized and taken the dB value. 

 

(2) Allowed Sensor Sharing 

In the sensor sharing case, some sensors will work in more than one pairs to make 

more pairs and more TDOA/FDOA measurements. For N sensors, there could be 2
NC  

possible pairs. To choose K 2( )NC≤  pairs, there could be 2
N

K
C

C  possible ways. For example, 



 64

for N=10 and K=5, the solution number is 122,1759. That is a huge number, definitely 

impossible to list all of them. But fortunately, among all the solutions only a small part of 

them are useful or unique. We have established the following theorem and proved it. 

Theorem: For M sensors, at most M-1 pairs can be used as a group; and different 

pairing method of the M sensors to make M-1 pairs will result in the same Cramer-Rao 

lower bound of geo-location estimation. 

Prove: 

 (1) For M sensors, at most M-1 pairs are linearly independent. 

Assume N sensors construct M pairs. Let kr  be the distance between sensors kS  and 

emitter, and 
1 2m m md r r= −  be the range difference of the thm  (1 )m M≤ ≤ pair, the 

subscript 1m  and 2m mean that the pair is by 1( )thm  and 2( )thm  sensors, for 

1 2 1 2, {1,2,... },  and m m N m m∈ ≠ .   

Let 1[ ]T
m Md d d=rd " "  and 1[ ]T

n Nr r r=r " " . Then the relationship 

between rd  and r  is given by 

 1 1M M N N× × ×= ⋅rd T r  (4-24) 

where T  is a sparse M N×  matrix, which has only one ‘1’ and one ‘-1’ at each row. For 

the structure of T , the rank of T  is less than N-1, which means there are at most N-1 md  

linearly independent. For example, the pairing in Figure 16: (i) pairs (1,2), (2,4) and (1,4) 

are linearly dependent pairs, for these three sensors (4-24) is given as 

 
1 1

2 2

3 4

1 1 0
0 1 1
1 0 1

d r
d r
d r

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (4-25) 
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(ii) pairs (3,5), (5,6) and (6,7) are linearly independent pairs, for these pairs (4-24) is 

given as  

 

3
1

5
2

6
3

7

1 1 0 0
0 1 1 0
0 0 1 1

r
d

r
d

r
d

r

⎡ ⎤
−⎡ ⎤ ⎡ ⎤ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦

 (4-26) 

Pa
ir-

1

Pa
ir-

1 Pair-2

Pair-3

 

Figure 16 An example of linearly independent and dependent pairs 

 

Linearly independent group, simply speaking, there are no closed loops for any 

sensors in the group. For N sensors, if we connect them one by one following the nature 

order, then for a open loop we can get N-1 pairs and for a close loop N  pairs. At first 

glance, it seems like one more pair of TDOA/FDOA measurements will increase the 

accuracy of the estimation of emitter location. Why can not we use the close loop? 

Assume the 1[ ]T
Md d=rd "  is an open loop, and 1

TT
Md +′ ⎡ ⎤= ⎣ ⎦rd rd  is a close loop, 

then there is a relationship exist as 

 1
T

Md + = ⋅β rd  (4-27) 

where β  is a 1M ×  vector with only ‘1’, ‘-1’ or ‘0’ as its elements.  

Since the TDOA estimates are obtained by Maximum Likelihood estimator and 

m md cτ= , then 

 1
T

Md +Δ = ⋅Δβ rd  (4-28) 
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where 1Md +Δ  and Δd are the estimation errors. The signal models used in the second stage 

estimation will be like 

 
1 1

( )

( )
e

T
M M ed f+ +

= + Δ

= + ⋅Δ

d f p d

p β d
 (4-29) 

Therefore the error vector ' [ ]T T T= Δ ⋅Δe d β d  is not i.i.d (independent identical 

distribution), we can not use the Least Square method to estimate ep . Therefore the one 

more pair is not able to be used. Or on the other hand, the usage of the one more 

TDOA/FDOA measurements will not give any more benefit at the second stage 

estimation, all its information is embedded in other pairs. 

(2) Unique CRLB for a group 

For M sensors, we can make as many as M-1 pairs without a close loop. For network 

type-III in Figure 10, there is M-1 ways to make these M-1 pairs. We are going to prove 

that the CRLB is independent of the choice of reference sensor. 

Let there be a different reference sensor (RS) in each different linearly independent 

group as in Figure 17. But the sensors inside each group are the same. In group-I, 3S  is 

the RS; in group-J, 2S  is the RS. 

 

Figure 17 An example of different choice of reference sensor 

 

Let c be the signal propagation speed, the range difference equations is 
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 kj kj k jr c r rτ= = −  (4-30) 

When the receivers are moving, taking time derivative of  (4-30)  yields a set of FDOA 

measurement equation 

 kj kj k jr c r rτ= = −� � � �  (4-31) 

where ir�  is the rate of change of ir . From the time derivative of (3-15), ir�  is related to the 

unknown location ep  by 

 ( )T
i e i

i
i

r
r

−
=

s p s��  (4-32) 

Let 1 2 1 2[ , , , , , , , ]T
N Nr r r r r r=r � � �" "  , 1 1[ , , , , ; , , , , ] ,T

i i ki Ni i ki Nir r r r r r k i= ≠p � � �" " " "  and 

1 1[ , , , , , , , , , ] ,T
j j kj Nj j kj Njr r r r r r k j= ≠p � � �" " " "  then 

 i
i i

i

⎡ ⎤
= ⋅ = ⋅⎢ ⎥
⎣ ⎦

Τ 0
p r H r

0 Τ
 (4-33) 

and 

 j
j j

j

⎡ ⎤
= ⋅ = ⋅⎢ ⎥
⎣ ⎦

Τ 0
p r H r

0 Τ
 (4-34) 

where iT  is a ( 1)N N− ×  matrix, and has the following structure 

 [ ] ,

1,  
1,  1,2,..., 1,  

1,  1, 2,..., 1,  1
0,  others

i m n

n i
m i n m

m i n m

− =⎧
⎪ = − =⎪= ⎨ = − = +⎪
⎪⎩

T  (4-35) 

0  is a ( 1)N N− ×  matrixes with all 0 entries. Let a 2( 1) 2( 1)N N− × −  full rank matrix 

ijQ  has the structure as 

 ij
ij

ij

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

E 0
Q

0 E
 (4-36) 
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where ijE  is the elementary matrix, which is generated by exchanging the thi  and thj  

rows of the identity matrix. So ijQ  will satisfy 

 j ij i= ⋅H Q H  (4-37) 

then 

 ( )j j ij i ij i i= ⋅ = ⋅ ⋅ = ⋅ =p H r Q H r Q p g p  (4-38) 

Based on the vector parameter CRLB transformation property [1], CRLB( )jp  and 

CRLB( )ip  has the following relationship 

 ( ) ( )CRLB( ) CRLB( ) CRLB( )
T

Ti i
j i ij i ij

i i

⎡ ⎤ ⎡ ⎤∂ ∂
= =⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

g p g pp p Q p Q
p p

 (4-39) 

Denote the emitter location ep  estimated by sensor pair group-I as ˆ i
ep , the FIM of i

ep  

is 

 1FIM( )i T
e i i i

−= ⋅ ⋅p H C H  (4-40) 

where iC  is the covariance matrix of TDOA/FDOA measurements calculated by  

ˆ ˆE[ ]T
i i i= ⋅C p p . 

Since TDOA/FDOA are estimated by ML method, we assume the covariance of the 

estimates can reach CRLB, so CRLB( )i i=C p  and 

 CRLB( ) CRLB( ) T T
j j ij i ij ij i ij= = ⋅ ⋅ = ⋅ ⋅C p Q p Q Q C Q  (4-41) 

jH  is the Jacobin matrix of group-J defined by 

 
( ) [ ( )] ( )j e ij i e i e

j ij ij i
e e e

∂ ∂ ⋅ ∂
= = = ⋅ = ⋅

∂ ∂ ∂

p p Q p p p pH Q Q H
p p p

 (4-42) 

Then 
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1

1

1 1 1

1

FIM( )

                 ( ) ( ) ( )

                 [ ( ) ] [ ]

                 

                  = FIM( )

j T
e j j j

T T
ij i ij i ij ij i

T T T
i ij ij i ij ij i

T
i i i

i
e

−

−

− − −

−

= ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅

p H C H

Q H Q C Q Q H

H Q Q C Q Q H

H C H

p

 (4-43) 

We just proved that for a group of sensors, the FIM is identical (and so is the CRLB) 

if we choose network type-III to pair them, which selects one sensor as reference one. For 

the sensor network type-II, there is no reference sensor. We pair all of them and avoid 

any close loop. Then the matrix iT , defined as in (4-33), is a ( 1)N N− ×  matrix, which 

only has one ‘1’ and one ‘-1’ in each row, and so does jT , which is the transform matrix 

for another pairing method. The full rank matrix transform ijQ  does not have a obvious 

structure as in (4-35), but it is not hard to find the transform matrix and satisfies (4-37). 

The following proven is the same as we prove the type-III.  

We get the final conclusion, for M sensors, we can have at most M-1 pairs usable, and 

the FIM/CRLB does not depend on the pairing method if there is not any close loop. � 

 

Based on this statement, it is possible to make the sensor selection and pairing. When 

we are given N  sensors and asked to make K  pairs, there are many solutions for this 

network. We can use at least 1K +  sensors to make it or at most 2K  sensors to make all 

independent pairs. Since the main advantage to share sensors is to save some sensors 

energies, we should use the number of sensors as less as possible. So here we only choose 

1K +  sensors to make K  pairs. 

For example, for given 7N =  and 3K =  pairs needed, compute the CRLB of geo-

location of all 4
7 35C =  solutions, and find the one with the smallest trace. Inside each 
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solution, sensors are paired by sequence or paired by one reference sensor. For example, 

as in Figure 18, the solution set is 1 2 3 4{ , , , }S S S S , the pairs are 1 2 2 3 3 4( , ),( , ), ( , )S S S S S S . 

 

Figure 18 Example of sequence pairing and reference pairing 

 

A simulation result for the case of locating an emitter with a random lay-down of 10 

sensors (all the parameters used are as in the pre-paired case) is given in Figure 19.  It 

shows the performance of sensor selection and pairing with sensor sharing for the free 

sensors case. For the given 10 sensors, we make 2 to 9 pairs, shown on the horizontal axis. 

The vertical axis shows the normalized dB value standard deviation of the geo-location 

distance error standard derivation versus the number pairs selected. The upper curve (-Δ-) 

shows the performance for some randomly selected pairs; the lower curve (-O-) shows 

the performance when using the FIM-based pairing method discussed above.  
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Figure 19 Simulation result 10 free sensors selection and pairing with sensor sharing. 

The standard deviation is normalized and taken the dB value. 

 

4.3.3 Trade Off Between Non-Sharing and Sharing Methods 

(1) Without Sensor Sharing 

• FIM of Geo-Location is easy to calculate, since each pair is independent; 

• However, the pairing method is more complicated, since we need to consider 

all the possible paring ways; 

• From a system point of view, the communication among different pairs can be 

done simultaneously; 

• The number of pairs needed is small; beyond a certain point the accuracy 

improves slowly as more pairs are selected to participate. 

(2) With Sensor Sharing 
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• For a total of N sensors we can have as many as 1N − pairs, the more the 

higher accuracy of location estimation; 

• Fortunately, FIM of all the possible independent sets are the same, so we do 

not need to consider about the pairing method. One simple way is to pair the 

sensors in nature order.  This is the main result of this work and leads to a 

major reduction in the optimization processing required. 

• However, since not all the pairs are uncoupled, there are cross terms in the 

TDOA/FDOA FIM. This complicates the computation required to support the 

optimization processing. 

• Some sensors work in more than one pair, the communication among them 

needs to be considered carefully to avoid collision.  This will be the focus of 

future work. 

 

Appendix-4A an Example of Branch and Bound Method 

Used in Sensor Pairing 

Branch and Bound method [5] is based on that the enumeration of integer solutions 

has a tree structure. At each step, a decision will be made on one integer variable. The 

main idea in branch and bound is to avoid growing the whole tree as much as possible. 

When a node is selected for further growing, it is like branching.  Not all nodes are going 

to be evaluated, some are pruned in the intermediate steps. 
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Instead of enumerating all possible solutions, in each step to choose the next pair, we 

grow the only ‘better’ ones. By ‘better’, we mean whose have the higher probability to be 

optimal. 

For 8N = , there are 28 possible pairs, randomly give each possible pair a value. (n, m) 

means the pair is paired be sensor-n and sensor-m. In the first step to choose the first pair, 

without loss of generality, we choose the pairs which have sensor-1 as one part. For 

example, if we choose pair (1,2) as the first pair, then the bounding function value for it is 

71, which let pair (3,5)-(3,6)-(7,8) as the following choosing pairs. Since sensor-1 and 

sensor-2 are actually paired, we did not let them to reuse in the bounding function 

calculation at this node or any descendent nodes. The very best objective function value 

that we might have at a leaf node descended from (1,2)-?-?-? is 71. Sine sensor-3 is 

shared between two pairs, this solution is not feasible, but maybe needed to be fathomed, 

it depends on the incumbent we maybe find later. Based on this decision strategy, we got 

the bud nodes in the first step of the tree as Figure 20 

 

Figure 20 First step tree structure 

The first step of the tree is generated from the root node by enumerating all the 

possible pairs which have sensor-1. By evaluate the bounding function, we get our first 
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best infeasible solution, (1,5)-(2,4)-(3,6)-(7,8) , as incumbent=70. And prune the pair(1,6) 

and (1,8), whose bounding function value are smaller than incumbent. 

Pruned nodes are indicated by dashed border, incumbent node is by bold border, and 

infeasible nodes, whose bounding function value are larger than incumbent, are going to 

be growing in some order. 

Since we are using the global-best node selection policy and the objective function is 

to maximize, we choose pair (1,7) , who has the largest bounding function value, for first 

further expansion, which gives the next tree step as Figure 21 

 

Figure 21 Second step tree structure 

The expansion of pair(1,7) is at the second step of the tree. It is generated from the 

(1,7) node by enumerating all the possible pairs which have sensor-2, this is based on 

nature order. After evaluating all the bounding function values, some nodes were pruned. 

But we did not find a new incumbent in this expansion. Also the global-best node 

selection policy, after comparing all the bounding function values of current remaining 

nodes, partial solution (1,7)-(2,4) is to be fathomed next, which gives the result as Figure 

22. 
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Figure 22 Third step tree structure 

Since this is the last step in the tree, evaluating gives the objective function values. 

And we are lucky, since one value is larger than the incumbent, all the other leaf node 

values, and all the bounding values of infeasible bud nodes we got before. So we have the 

new incumbent, which is also the final solution as (1,7)-(2,4)-(3,5)-(6,8). 

In this particular example, we also evaluated 15 nodes, which is much smaller than 

the work of a full enumeration of the 105 possible solutions. 

Simulation in Figure 23 gives the comparison of time consuming between 

enumerating method and branch and bound method. We only let N=12 for the largest 

number, since for larger N, the enumerating way is even impossible to realize. The upper 

curve (-Δ-) shows the performance for the enumerating method; the lower curve (-O-) 

shows the performance when using the branch and bound method discussed above. The 

result shows that the dynamic programming method saves computation times largely.  
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Figure 23 Simulation result for time consumption comparison between of 'branch and bound’ 

method and enumerating method 
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5 Sensors’ Navigation Data Error Effects and 

Mitigation 

The signal model used in the second stage estimation depends on the sensors 

positions and velocity. And we have discussed in session 3.4 that the accuracy of emitter 

location is sensitive to the accuracy of sensors navigation data (NAV). Besides the 

TDOA/FDOA estimation errors, sensors’ NAV errors can also lead to the emitter 

location errors. In practice, the sensor navigation data can not be known exactly, there is 

always error. This issue has been considered for a while, for example in [39], they 

analyzed the NAV errors effects and gave a closed form solution to solve this problem. 

But the algorithms are not simple and have many assumptions and simplifications. In this 

section, we will develop how the errors affect the estimation accuracy and the updated 

CRLB of geo-location. And we will take the navigation data errors into account when 

doing the second stage estimation to reach the updated CRLB. 

5.1 Least-Squares Estimation Error Model 

At the second stage estimation, we used non-linear least square method to estimate 

the geo-location. The signal model errors along with the measurement errors will impact 

in this stage. 

Assume the thm  pair is paired by the (m,1)th and (m,2) th sensors, the signal model for 

TDOA mτ  and FDOA mω  are given by  
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,1 ,2

,1 ,1 ,2 ,2

1 (|| || || ||)

( )

m e m e m

T Te
m m m m m

c
f
c

τ

υ

= − − −

= ⋅ − ⋅

p s p s

u s u s� �
 (5-1) 

Define the sensors’ parameter vector for the thm  pair as ,1 ,1 ,2 ,2[ , , , ]T T T T T
m m m m m=β s s s s� � . Then 

(5-1) can be written as 

 
( , )

( , )
m m e m

m m e m

f

f

τ

υ

τ

υ

=

=

p β

p β
 (5-2) 

The TDOA/FDOA measurements are modeled as being corrupted by an additive 

noise vector [ , ]T
m m mτ υ= Δ Δe . It also is not possible to know the sensors’ position and 

velocity (the navigation data) without errors; thus they are modeled as being corrupted by 

an additive error vector ,1 ,1 ,2 ,2[ , , , ]T T T T T
m m m m m= Δ Δ Δ Δη s s s s� � . Vector forms of the quantities of 

interest at the total M pairs measurements are denoted as 

 

1 1

1 1 1

1 1
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e
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e
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⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤
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β p β

Β f p Β
β p β

p β

e η
e N

e η

# #

# #

 (5-3) 

And then the TDOA/FDOA vector [ ]1 1
T

M Mτ υ τ υ=m " , measurement vector is 

m̂ , and the sensors’ navigation data estimation vector become, respectively as 

 ˆ ( , )e= +m f p Β e  (5-4) 

and 

 ˆ = −Β Β N  (5-5) 
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The emitter location problem then becomes: given TDOA/FDOA measurement 

vector m̂  and the local state estimate vector Β̂ , and also a reference location 0
ep  (Which 

could be an estimate of ep  determined from a previous iteration of the estimation 

procedure or based upon a priori information.) compute an estimate  ˆ ep  of ep . The goal 

of this section is to characterize the impact of using Β̂  in this processing rather than the 

unavailable actual Β .  

Since ( , )ef p Β  is a nonlinear vector function with respect to ep . To get a reasonably 

simple estimator, ( , )ef p Β  can be linearized by expanding it in a Taylor expansion about 

0
ep  and retaining the first two terms as 

 0 0( , ) ( , ) ( )e e e e≅ + −f p Β f p Β H p p  (5-6) 

where 
0

( , )

e e

e

e =

∂
=

∂
p p

f p ΒH
p

. Combining (5-6) and (5-4) gives 

 e= ⋅ +r H p e  (5-7) 

where 0 0ˆ ( , )e e= − + ⋅r m f p Β H p .  

The least square approach is to solve 

 [ ] [ ]{ }ˆ arg min
e

T
e e e= − ⋅ − ⋅

p
p r H p W r H p  (5-8) 

Thus the solution of (5-8) is 

 
( )

( )

1

10 0

ˆ

ˆ    ( , )

T T
e

T T
e e

−

−

= ⋅

⎡ ⎤= + −⎣ ⎦

p H WH H W r

p H WH H W m f p Β
 (5-9) 

Substituting (5-4) into (5-9) and rearranging terms, the expression of ˆ ep  can be 

written in the form 

 ( ) ( )1
ˆ T T

e e H

−
= + Δ +p p H WH H W f e  (5-10) 
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where 0 0( , ) ( , ) ( )H e e e eΔ = − − −f f p Β f p Β H p p  is the signal model linearization error.  

We assume the exact knowledge of system parameter vector Β  at the above analysis 

up to (5-10). If Β̂  is sufficiently close to Β , then the Taylor expansion with respect to Β  

yields 

 ˆ ˆ( , ) ( , ) ( )e e≅ + −f p Β f p Β K Β Β  (5-11) 

where 
ˆ

( , )e

=

∂
=

∂ Β Β

f p ΒK
Β

.  Substitute (5-11) into (5-9) and rearranging terms, the 

expression of ˆ ep  can be written in the form 

 ( ) ( )1
ˆ T T

e e H K

−
= + Δ + Δ +p p H WH H W f f e  (5-12) 

where ˆ( )KΔ = − =f K Β Β KN  is the error caused by the sensors’ navigation data (system 

parameters) uncertainty.  

It is clear that the estimation error is composed by there error items: (i) linearization 

error 1 H= Δn f ; (ii) the signal models error 2 K= Δn f ; (iii) the TDOA/FDOA measurement 

error 3 =n e .  

The bias of the estimator is  

 { } ( ) { }1
ˆE ET T

e e H K

−
− = ⋅ Δ + Δ +p p H WH H W f f e  (5-13) 

And the covariance matrix of estimation error is given as 

 { } ( ) { } ( )1 1
ˆvar varT T T

e e H K

− −⎡ ⎤ ⎡ ⎤− = ⋅ Δ + Δ + ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
p p H WH H W f f e WH H WH  (5-14) 

Since we use the iterative method to update the estimation, the linearization error HΔf  

can be ignored at the final step. For the signal model error, there are two cases we need to 

discuss about: (i) If Β  is nonrandom, then the uncertainty of it will contribute to the bias 

of the estimator, since { }E K KΔ = Δf f . But it will not affect the covariance matrix of 
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estimation error, since { }var KΔ =f 0 ; (ii) If Β  is random and has zeros mean and 

covariance matrix NC , then the estimation bias only depend on e . And assume N  is 

independent with e , let { }1 var− = =eW C e , then the estimation error covariance matrix 

become to 

 { } ( ) ( ) ( )1 1 11 1 1 1 1

1 1 1

ˆvar

                    

T T T T
e e

T

− − −− − − − −
Δ

− − −

− = +

= +

e e e f e ep p H C H H C H H C C C H H C H

X X YZY X
 (5-15) 

where  

 

1

1

T

T

T

−

−

e

e

N

X H C H

Y H C

Z KC K

�

�

�

 (5-16) 

Compare with the case without sensor uncertainty, we can see the second term in 

{ }ˆvar e e−p p  is the increased variance. The trace of the second term of (5-15) is the 

decrease of accuracy due to the sensor states uncertainty. 

From the above discussion, in the second stage estimation, if the sensor local state 

errors do not take into account, the effected item is the Jacobian matrix H . That is the 

system matrix used in the iterative least square estimation for the second stage processing 

contains errors due to the navigation data uncertainty. A generalized least square, called 

Total Least Square (TLS) is usually used to solve this kind of problems. In appendix-4A, 

we introduce this method and find out whether it will not be applied to our problem. And 

we develop a new solution to solve this system uncertainty problem later. 

5.2 CRLB Revisit 

We know if there is no sensor navigation data uncertainty, Fisher information matrix 

of emitter location is calculated as 
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 1 1( , ) ( , )FIM( )
e

T
Te e

e
e e

− −⎡ ⎤ ⎡ ⎤∂ ∂
= =⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

e e

p

f p Β f p Βp C H C H
p p

 (5-17) 

where all the matrices are defined previously. But since we do not know Β  exactly, the 

uncertainty of Β  will be counted into the CRLB of ep . So we need to re-evaluate the 

FIM of ep  based on the evaluation of FIM of 
TT T

e⎡ ⎤⎣ ⎦p Β . There are two signal models 

related with ep  and Β  as 

 
ˆ ( , )
ˆ

e= +

= +

m f p Β e

Β Β N
 (5-18) 

The measurement vector is ˆˆ
TT T⎡ ⎤= ⎣ ⎦α m Β . And we assume N  is AWGN with zero 

mean and covariance matrix NC ; N  and e  are independent. Then the PDF of α  is given 

by 

 

( )
( ) ( )
[ ] [ ] ( ) ( )1 1

1 2

ˆˆln ;

ˆˆln ; ln ;

1 1 ˆ ˆˆ ˆ( , ) ( , )
2 2

T TT T T T

TT T
e

TT
e e

p

p p

α α− −

⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦

⎡ ⎤= +⎣ ⎦

= − − − + − − −e N

m Β m Β

m p Β Β Β

m f p Β C m f p Β Β Β C Β Β

 (5-19) 

where (if assume N sensors, M pairs and two-dimensional case) 

 1 21/ 2 1/ 22 4

1 1 and 
(2 ) (2 )M N

α α
π π

= =
e NC C

 (5-20) 

The FIM of 
TT T

e⎡ ⎤⎣ ⎦p Β  will have the block structure as  

 ( ) FIM( ) Cross_FIM( , )
FIM ,

Cross_FIM ( , ) FIM( )
T e eT T

e T
e

⎡ ⎤
⎡ ⎤ = ⎢ ⎥⎣ ⎦

⎣ ⎦

p p Β
p Β

p Β Β
 (5-21) 

then we can evaluate each block individually. 

Apply the FIM of AWGN case on (5-19), get 
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 1 1( , ) ( , )FIM( )
T

Te e
e

e e

− −⎡ ⎤ ⎡ ⎤∂ ∂
= =⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

e e
f p Β f p Βp C H C H

p p
 (5-22) 

and 

 1 1 1 1( , ) ( , )FIM( )
T

Te e− − − −∂ ∂⎡ ⎤ ⎡ ⎤= + = +⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
e N e N

f p Β f p ΒΒ C C K C K C
Β Β

 (5-23) 

and 

 1 1( , ) ( , )Cross_FIM( , )
T

Te e
e

e

− −⎡ ⎤∂ ∂⎡ ⎤= =⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦⎣ ⎦
e e

f p Β f p Βp Β C H C K
p Β

 (5-24) 

The CRLB matrix of 
TT T

e⎡ ⎤⎣ ⎦p Β  will also have the block structure as 

 
( ) ( ) 1

CRLB , FIM ,

CRLB( ) Cross_Covariance( , )
Cross_Covariance ( , ) CRLB( )

T TT T T T
e e

e e
T

e

−
⎡ ⎤⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

p Β p Β

p p Β
p Β Β

 (5-25) 

Substitute (5-22), (5-23) and (5-24) into (5-21), and the matrix theory gives the 

CRLB of ep  as 

 ( ) 11 1 1 1CRLB( ) T T
e

−− − − −= + −p X X Y Z Y X Y Y X  (5-26) 

where ,  and X Y Z  have the same definition as (5-16).  

The above analysis indicates that when there is sensor local state uncertainty, the 

CRLB of ep  will have one more term compare with the case without uncertainty. If we 

do not consider this uncertainty in our second stage estimation, the estimation covariance 

matrix can not reach the CRLB.  
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5.3 Updated Weighted Matrix 

When we do not consider about the sensors’ navigation data uncertainty, the 

weighted matrix is only related with the TDOA/FDOA measurement errors. And the 

estimation variance is (5-15). Ignore the linearization error HΔf , then (5-12) becomes 

 ( ) ( )1
ˆ T T

e e

−
− = +p p H WH H W e KN  (5-27) 

Update the weighted matrix W  to 

 { }1 var T− = + = +e NW e KN C KC K  (5-28) 

then  

 
{ } ( )

( )

11

11 1 1 1

ˆvar

                   

T T
e e

T T

−−

−− − − −

⎡ ⎤− = +⎢ ⎥⎣ ⎦

= + −

e Np p H C KC K H

X X Y Z Y X Y Y X
 (5-29) 

where  and X Y Z  are defined as (5-16).  

The trace of the second term of (5-29) comparing to the trace of the second term of  

(5-15) is the increased accuracy for geo-location estimation, if we use 1 T− = +e NW C KC K  

instead of 1− = eW C .  

And also when the navigation date error vector is AWGN and Β̂  is close enough to 

Β , if we use (5-28) as the weighted matrix, the covariance matrix of ep can reach the 

CRLB of ep  as in (5-26). 

 

5.4 Estimation Accuracy with Local State Error 

In the previous session, we developed the updated CRLB of geo-location under the 

case with sensors’ states uncertainty and give a solution to reach it. In chapter 3, we have 
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discussed all the related items of emitter location accuracy, but we do not develop more 

details about to what extent sensor local states estimation errors will contribute to the 

estimation accuracy. In this section, we analyze the sensitivity of the estimation accuracy 

with respect to local state. From (3-60), the uncertainty caused by sensors navigation data 

is as 

 
T

m
m m

m

f d
⎛ ⎞∂

∑ = ⎜ ⎟∂⎝ ⎠
β

β
 (5-30)  

And for notation simplicity, we discuss one pair only and assume the pair is paired by 

sensors 1S  and 2S . All the typical values of sensors’ navigation data are from ????? 

5.4.1  TDOA 

The TDOA signal model is influenced by sensor position vector 1 2

TT T
m ⎡ ⎤= ⎣ ⎦β s s  only.  

 
T

m m
m m m

m m

τ τ ⊥⎛ ⎞∂ ∂
∑ = Δ = ⋅ Δ⎜ ⎟∂ ∂⎝ ⎠

β β
β β

 (5-31) 

where m mτ∂ ∂β is the gradient vector of mτ  with respect to mβ . And m
⊥Δβ  is the 

component of mΔβ  in the direction of m mτ∂ ∂β , which is the normal to the surface 

defined by mτ . Then 

 
2

22
m

m
m

m

τ ⊥
∑

∂
∂ = ⋅ Δ

∂
β

β
 (5-32) 

The uncertainty in mβ  is reflected in mτ  through 

 1

2

1 2m

m c c
τ ⎡ ⎤−∂

= =⎢ ⎥∂ ⎣ ⎦

u
β u

 (5-33) 
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And the typical error of position of the on-board navigation system is mΔs  is 10meter. 

Then  

 2 2010 2
m c c∑∂ ≈ ⋅ =  (5-34) 

5.4.2 FDOA 

The FDOA signal model is influenced by both sensor position vector 1 2

TT T
m ⎡ ⎤= ⎣ ⎦β s s  

and velocity vector 1 2

TT T
m ⎡ ⎤= ⎣ ⎦β s s� � � . And can be evaluated from 

 
22

222
m

m m
m m

m mm

υ υ⊥ ⊥
∑

∂ ∂
∂ = ⋅ Δ + ⋅ Δ

∂ ∂
β β

β β
�

�  (5-35) 

where m mυ∂ ∂β , m mmυ∂ ∂β�  are the gradient vectors of mυ  with respect to mβ , mmβ�  

respectively. The uncertainty in mβ  is reflected in mυ  through 

 

1 1 1 1

1 1 2

1 22 2 2 2

2

T

m e e
T

m

rf f
c c r r

r

υ
⎡ ⎤−
⎢ ⎥ ⎛ ⎞∂ ⎢ ⎥= ≤ +⎜ ⎟⎢ ⎥∂ − ⎝ ⎠⎢ ⎥
⎢ ⎥⎣ ⎦

s u s u
s s

β s u s u

� �
� �

� �
 (5-36) 

For the typical values of kr  and || ||ks� , which are 50km and 250m/s, 1 1 2 2|| || || ||r r+s s� �  is on 

the order of 210 2 / s− .  

The uncertainty in mmβ�  is reflected in mυ  through 

 1

2

2m e e

mm

f f
c c

υ ⎡ ⎤∂
= =⎢ ⎥∂ −⎣ ⎦

u
β u�  (5-37) 

The typical error of velocity of the on-board navigation system is kΔs�  is 0.02m/s. 

Therefore 
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 22(10 10 0.02) 2(0.1 0.02)
m

e ef f
c c

−
∑∂ ≈ ⋅ + ≈ +  (5-38) 

Compare (5-34) and (5-38) reveals that the influence of uncertainty of position on 

TDOA can be ignored comparing with the effects of uncertainty of position and velocity 

on FDOA. 

 

5.5 Appendix-5A Total Least Square Method for NAV 

Data Errors 

5A.1 Introduction of TLS 

 Least Squares 

In order to introduce TLS, we briefly talk about some basic points about LS. 

Assuming signal has linear model on the parameter vector θ  as 

 =s Hθ  (5-39) 

where  H  is a known N p×  matrix ( )N p>  of full rank. The matrix H  is refereed to as 

the observation/system matrix. Knowing H  and s  we should be able to find the 

parameter vector θ  that made the observable s , since range( )∈s H . However, in practice 

we often only have imperfect knowledge of s  due to the measurement error, which is 

= + Δs s s� . Then we are going to solve =s Hθ� . There is no solution for this equation, 

since range( )∉s H� . Then the problem is: Given the matrix H  and the imperfect s , find 

an appropriate estimate of θ .  The LS approach finds an estimate θ̂  such that the residual 

defined as ˆ= −r Hθ s�  has minimum norm; that is, 
2

ˆ −Hθ s� is minimized. In other words: 
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Least Square: Minimize 
2

r  subject to  range( )+ ∈s r H�  and then find the θ̂  that 

satisfies ˆ+ =s r Hθ� .   

 Total Least Squares 

The signal model is still as (5-39), but H  is perturbed by system errors to be 

= + ΔH H H� . We are going to solve =s Hθ�� . There is no solution for this equation either, 

since range( )∉s H�� . Recall that for standard LS we sought to find a minimum norm 

vector r  that would bring s�  back into range( )H .  Here we seek simultaneously to find a 

vector r  and a matrix E  such that 

 range( )+ ∈ +s r H E��  (5-40) 

Then the total least square can be viewed as: 

Total Least Square: Find the smallest perturbations r  and E such that 

range( )+ ∈ +s r H E��  and then find the θ̂  that satisfies ˆ( )+ = +s r H E θ��  . 

The criterion taken in TLS to measure the joint size of perturbations  r  and E  is to 

form the ( 1)N p× +  matrix [ ]|=Δ E r , and measure the size of  Δ  in some sense.  The 

norm of a matrix is used for this purpose.  There are many matrix norms that can be 

defined, but the one used here for TLS is the Fresenius norm that 

 2
ijF

i j
= Δ∑∑Δ  (5-41) 

Then the definition of TLS can be rewritten as: 

Total Least Square: Minimize [ ]|
F

E r subject to range( )+ ∈ +s r H E��  and then find 

the θ̂  that satisfies ˆ( )+ = +s r H E θ�� . 

The equation to solve is  
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 ( )+ = +s r H E θ��  (5-42) 

which can be rewritten as 

 ( ) ⎡ ⎤
+ =⎢ ⎥−⎣ ⎦

θ
A Δ 0

1
 (5-43) 

where  |⎡ ⎤= ⎣ ⎦A H s� � . To get a nontrivial solution to (5-43) requires that Δ  be such that 

+A Δ  is rank deficient.  That is to find = +A A Δ�  such that A�  is the closest rank-

deficient matrix to A . Then the definition of TLS can be rewritten as: 

Total Least Square: Find the smallest perturbation Δ  that makes |⎡ ⎤= +⎣ ⎦A H s Δ� � �  

rank deficient then find the θ̂  such that ˆ[ , ]T T T= −β θ 1  is in the null space of A� . 

Matrix theory says that such a matrix A%  is found by replacing the smallest singular 

value of A  by zero.  Thus, the vector that solves =Aβ 0%   must be orthogonal to the 

singular vectors of A  that remain in A% .  Since the singular vector v  removed from A  to 

make A%  is orthogonal to the singular vectors that remain in A% , it must satisfy =Av 0% .  

Thus, β  is proportional to v , and all that is needed is to make the last entry in v  be –1 to 

get the form needed for β .  So if we take v  and divide all of its elements by the negative 

of its last element we get β .  

We know the weighted LS (WLS) is used to normalize the residue. So 

correspondingly there is a WTLS method. Let W  be a given N N×  left-side weighting 

matrix and  T  be a given ( 1) ( 1)p p+ × +  right-side weighting matrix. Then the WTLS 

becomes to: 

Weighted TLS: Minimize 
F

TrEW ]|[  subject to range( )+ ∈ +s r H E%%  and then find 

the θ̂  that satisfies ˆ( )+ = +s r H E θ%% . 
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 Performance of Total Least-Squares 

The problem to be solved is =s Hθ%% , where N p×H%  and 1N×s%  are perturbed versions of 

some H  and s . We will assume that the perturbations have uniform levels in all columns 

of H%  and s% ; this uniformity may have been achieved through the weighting matrices W  

and T . We also assume that H%  has full rank. For notational purposes, define the 

following singular value decompositions: 

 1 1

1 1

1 1
[ | ] [ | ]

p p
T T

i i i i i i
i i

p p
T T

i i i i i i
i i

σ σ

σ σ

= =

+ +

= =

′ ′ ′ ′ ′ ′= =

= =

∑ ∑

∑ ∑

H u v H u v

H s u v H s u v

% % % %

% % % % %

 (5-44) 

The performance advantage of TLS compared to LS has been studied and it has been 

shown that, for the assumptions made above, TLS performs better than LS when 

 2

2

1
[ | ]

p

p

σ
σ

⎡ ⎤ ⎡ ⎤Δ
⋅ >⎢ ⎥ ⎢ ⎥′Δ Δ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

H
H s

%

%
 (5-45) 

where 
2

M denotes the two-norm of matrix M  defined as 

 
2

2 2
1

sup
x =

=M Mx  (5-46) 

TLS performance improves as the quantity on the left-hand side of (5-45) increases.  

Because we assume uniform level of perturbations, the ratio of norms in the first term in 

(5-45) is  

 2

2

1
[ | ]

⎡ ⎤Δ
≈⎢ ⎥

Δ Δ⎢ ⎥⎣ ⎦

H
H s

 (5-47) 

Thus, we only need to look at the ratio of singular values in (5-45), which depends on 

the relative structures of H%  and [ | ]H s% % .  It is shown in [] that the ratio nn σ′σ ~/~  is 
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influenced by (i) the norm of vector s  and (ii) the angle between the vector s  and the thn  

left singular vector nu′  of H .  To see this, first note that because the perturbations are at 

uniform levels, we can investigate this phenomenon using the unperturbed matrices and 

their ratio nn σ′σ / ; this is because the uniform-level perturbations will uniformly impact 

the numerator and denominator of nn σ′σ /  to create nn σ′σ ~/~ .  So from (5-44) we see that 

 

T
n n n

TT
n

n n nTT
n

σ

σ

′ ′ ′=

⎡ ⎤⎡ ⎤
= =⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

H u v

H uH
u v

s us

 (5-48) 

When T
nH u and T

ns u  simultaneously become large, [ ]| T
nH s u  will have maximum 

length. When nn uu ′=  the length of T
nH u  is maximized and then if in addition s  is 

aligned with nn uu ′= , the magnitude of T
ns u  is maximized.  Furthermore, the larger the 

norm of s , the larger the increase in nσ  will be.  Thus, TLS will perform at its best with 

respect to LS when s  is aligned with the thn  left singular vector nu′  of  H  and has a large 

norm. 

5A.2 TLS Performance for Emitter Location Estimation 

The signal model for TDOA/FDOA emitter location problem is 

 ( , )e=m f p B  (5-49) 

and the observed vector model is  

 ˆˆ ( , )e= +m f p Β e  (5-50) 

Vectors are defined as in (5-3). We are going to find the solution of the linearized 

(5-50) as   
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 ˆ1ˆ e= ⋅ +
B

m H p e  (5-51) 

where  

 

0

0 0
ˆ1

ˆ

ˆˆ ˆ ( , )

ˆ( , )

e e

e e

e

e =

= − +

∂
=

∂

B

B
p p

m m f p B H p

f p BH
p

 (5-52) 

where 0
ep  is the normal value of ep . (5-51) is viewed as a perturbed version of 

 1 e= ⋅Θm H p  (5-53) 

where 0 0
1 ( , )e e= − + Bm m f p B H p . And if we assume 0

ep  is close enough to ep , then 

1 ≈m 0 . (5-53) becomes a homogenous linear system. 

For the two-dimensional system we used, H  has two columns as 
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 (5-54) 

Since 1 =m 0 , apply this special case on (5-44)  

 

2 2

ˆ
1 1

3 3

ˆ
1 1
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 (5-55) 

Then we need to look at the ratio of the 2nd  singular value of ˆ[ | ]BH e  to the  2nd  

singular value of  
B̂

H .  Since the navigation data is obtained by some combined methods 

to make it close enough to the true values, then the perturbations are small on H . we can 
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instead just look at the singular values of the unperturbed matrices because the 

perturbations will have little effect in making this ratio much different from the ratio of 

singular values of the perturbed case.  The singular values of the unperturbed matrices of 

interest here are 

 
ˆ 1 2

ˆ 1 2

: ,

| : , ,0

σ σ

σ σ

′ ′

′ ′⎡ ⎤⎣ ⎦

B

B

H

H 0
 (5-56) 

Thus, the perturbed ratio approximately equals the unperturbed ratio, which equals 1; 

therefore the performance of TLS is equivalent to that of LS for this case.  It is the fact 

that the underlying unperturbed problem to be solved is a homogeneous equation that 

makes TLS ineffective compared to LS.  These insights are consistent with the general 

observations in: TLS has its greatest advantage when s  has a large length and is aligned 

in direction with the thn  left singular vector nu′  of H ; however, for the homogeneous 

case s  has zero length and is orthogonal to nu′  and therefore provides no advantage for 

TLS with respect to LS. 

Our conclusion is that since the sensor local states uncertainty is small, TLS has no 

advantage than LS in estimating emitter location. We will not use TLS to improve the 

accuracy.  
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6 More Issues about Estimation Accuracy 

From above discussion, the accuracy of the emitter location estimation is depending 

on three aspects: (i) Accuracy of the first stage TDOA/FDOA measurements; (ii) The 

current sensors’ navigation data; and (iii) The sensors’ local states accuracy. For the first 

aspect, one important thing we need to consider is that whether the estimates are obtained 

from centralized maximum likelihood method or de-centralized maximum likelihood 

method, since the covariance matrices maybe different. This issue has been talked before, 

but the result as in [14] was only for acoustic scenario as we discussed in chapter 3. In 

this chapter, we develop the result for RF scenario. For the second aspect, we can try to 

find the next optimal states based on the current measurements and next researchable set. 

And enable the sensor to be as error-insensitive as possible to the various sources of error. 

We have discussed the third aspect and developing some results and updated algorithms 

to increase the estimation accuracy with sensors’ states uncertainty. 

6.1 Gaussian Maximum Likelihood Estimator 

In practice, the sensor network type-III is widely be used. There is a center sensor 

which has all the sensors’ navigation data and whole/part received data. This sensor has 

super computation ability than other sensors. And it can control other sensors, such as 

make the sensor selection and decide the next state for sensors. There are two methods to 

compute the TDOA/FDOA for all the pairs at the center sensor. One is centralized, which 

estimates all the TDOA/FDOA parameters together; the other one is de-centralized, 

which gets the TDOA/FDOA estimations pair-wised. The comparison of centralized 
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maximum likelihood method and de-centralized maximum likelihood method is as Figure 

24, here the ML method used is cross-correlation method.  

1 1,τ υ

2 2,τ υ

,M Mτ υ

1 1,τ υ

,M Mτ υ

 

Figure 24 Centralized cross-correlation vs. de-centralize cross-correlation method 

The centralized cross-correlation is a N-dimensional processing procedure which 

deals with the signal vector 1

TT T
N⎡ ⎤= ⎣ ⎦x x xL  together, nx  is data vector from each 

receiver. And the cross-correlator is a N-dimensional estimator to get the M pair estimates. 

On the other hand, the de-centralized one has M 2-dimentional cross-correlators. Each 

one only deals with data vector ,1 ,2

TT T
m m m⎡ ⎤= ⎣ ⎦x x x  and gives the estimation for one pair 

only. 

6.1.1 CML and DML Estimators 

(1) CML Estimator Structure 

Since we are dealing with the active radar signals (as we discussed in chapter 3), 

signal model is deterministic signal plus additive Gaussian noise as 

 ( ) ( ; ) ( )x t s t w t= +θ  (4-1) 

( ; )s t θ  represents deterministic signal ( )s t  parameterized by vector θ , which is a 1p×  

deterministic vector . Assume ( )w t  is zero-mean Gaussian noise. 
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Based on the signal model, the probability density function of Gaussian data vector x  

(sampled data vector of ( )x t ) is: 

 ( ) ( ) ( )1
2 1 2

1 1; exp
(2 ) det ( ) 2

T
wN

w

p
π

−⎡ ⎤= − − −⎢ ⎥⎣ ⎦
θ θx θ x s C x s

C
 (4-2) 

where θs  is the signal vector, which depends on θ ; wC  is  noise covariance matrix.  

The maximum likelihood estimate θ̂  of θ  is any solution of the likelihood equations 

 ( ) ( )
ˆ

ˆ; ln ; 0 1,2,...,i
i

z p i p
θ
∂

= = =
∂

θ

θ x x θ  (4-3) 

Substitute (4-2) in (4-3) and get,  

 ( ) ( )1ˆˆ ˆ; 0
T

i w
i

z
θ

−⎛ ⎞∂
= − =⎜ ⎟∂⎝ ⎠

θ
θ

sθ x C x s  (4-4) 

The hat ‘∧ ’ denotes the deterministic signal and its derivative with respect to iθ  are 

evaluated at ˆ=θ θ . Thus 

 ˆ
ˆ

ˆ ˆ
i iθ θ =

=

∂ ∂
= =

∂ ∂
θ θ

θ θ θ θ
θ θ

s s s s  (4-5) 

(2) DML Estimator Structure 

We partition all the received data vector into M sub-vectors { }( )

1

Mm

m=
x , which satisfied 

( )
1

M m
m= =x xU , and partition the parameter vector into M  corresponding sub-vectors 

( )
1{ }m M

m=θ . (For example, in TDOA/FDOA case, if pair one is paired by sensor 1S  and 2S , 

then (1)
1 2,

TT T⎡ ⎤= ⎣ ⎦x x x  and [ ](1)
1 1, Tτ υ=θ .) Then the mean vector for the sub-vector 

( )mx depends on ( )mθ only as  

 { } ( )
( ) ( )E m
m m=

θ
x s  (4-6) 
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where ( )
( )

m
m
θ

s  is simply a sub-vector of θs .  

Decomposition of the data vector and the parameter vector suggests a form of an 

estimator consisting of M ML data processors in parallel. The thm  set of likelihood 

functions is given by  

 ( ) ( ) ( )( )

( )

( )
1( ) ( ) ( ) ( ) ( ) ( )

( )

ˆˆ ˆ;
m

m

Tm
m m m m m m

wm

−⎛ ⎞∂
= −⎜ ⎟⎜ ⎟∂⎝ ⎠

θ
θ

s
z θ x C x s

θ
 (4-7) 

(3) DML Estimator Performance 

To evaluate the DML method, we need to calculate the bias and error covariance 

matrix of the estimates. Here we begin with linearize each sub-vector of likelihood 

function ( )mz  with respect to ( )ˆ mθ  using the following stochastic approximation 

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ( ) ( ) ( )m m m m m m m= + −z θ z θ J θ θ θ  (4-8) 

where ( )( )mJ θ  is the matrix of partial derivative with respect to ( )ˆ mθ  and evaluated at ( )mθ , 

the ( , )thi j  element of it is 

 
( ) 2 ( ) ( )

( )
( ) ( ) ( )

ln ( ; )( ) E Eˆ ˆ ˆ

m m m
m i

ij m m m
j i j

z p
θ θ θ

⎧ ⎫ ⎧ ⎫∂ ∂⎪ ⎪ ⎪ ⎪= − = −⎨ ⎬ ⎨ ⎬
∂ ∂ ∂⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

x θJ θ  (4-9) 

We can see ( )( )m
ijJ θ is exactly the ( , )thi j element of the FIM of ( )mθ computed from 

( ) ( )( ; )m mp r θ .  

For ML method, ( )ˆ mθ is the solution of ( ) ( )ˆ( )m m =z θ 0 . Then from (4-8) get 

 ( ) ( ) 1 ( ) ( ) ( )ˆ ( ) ( )m m m m m−= −θ θ J θ z θ  (4-10) 

Then 

 { } { }( ) ( ) 1 ( ) ( ) ( )ˆE ( ) E ( )m m m m m−= − ⋅θ θ J θ z θ  (4-11) 

and 
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 { } { }( ) 1 ( ) ( ) ( ) 1 ( )ˆvar ( ) var ( ) ( )m m m m m− −= ⋅ ⋅θ J θ z θ J θ  (4-12) 

Evaluate { }( ) ( )E ( )m mz θ  and { }( ) ( )var ( )m mz θ  by substituting (4-7) and (4-3) in then 

 { } { }( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( ) ( ) 1 ( ) ( ) ( ) 1 ( ) ( )

( ) ( )E ( ) ( ) E ( )m m

m m m

m m
m m m m m m m m

w wm m
− −∂ ∂
⎡ ⎤ ⎡ ⎤= − = − =⎣ ⎦⎣ ⎦∂ ∂

θ θ
θ θ θ

s s
z θ C x s C s s 0

θ θ
 (4-13) 

 { } { }
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

ln ( ; ) ln ( ; )var E E ( )
Tm m m m

m m m T m
m m

p p⎧ ⎫⎡ ⎤ ⎡ ⎤∂ ∂⎪ ⎪= ⋅ = =⎨ ⎬⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

x θ x θz z z J θ
θ θ

(4-14) 

Substitution of (4-13) into (4-11) and (4-14) into (4-12) yields 

 { }( ) ( )ˆE m m=θ θ  (4-15) 

and 

 { }( ) 1 ( )ˆvar ( )m m−=θ J θ  (4-16) 

(4-15) and (4-16) indicate that ( )mθ estimated from ( )mr is unbiased and efficient. 

The approximate error covariance matrix between different sets of estimators is 

obtained by 

 { } { }( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) 1 ( )ˆ ˆcov , ( ) E [ ( )] [ ( )] ( )m n m m m n n T n− −= ⋅ ⋅ ⋅θ θ J θ z θ z θ J θ  (4-17) 

Evaluate { }( ) ( ) ( ) ( )E [ ( )] [ ( )]m m n n T⋅z θ z θ  by substituting (4-7) in then 

 { }
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

ln ( ; ) ln ( ; )E [ ( )] [ ( )] E
Tm m n n

m m n n T
m n

p p⎧ ⎫⎡ ⎤ ⎡ ⎤∂ ∂⎪ ⎪⋅ = ⎨ ⎬⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

x θ x θz θ z θ
θ θ

 (4-18) 

(4) DML Estimator and Original Estimator 

Let ( )m
m=θ A θ , then mA is the matrix of zero and one entries in the appropriate 

locations. Let (1) (2) ( )[ , ,..., ]
T T TM T=φ θ θ θ , then =φ Aθ , where 1 2 2[ , ,..., ]T T T T=A A A A . 
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Based on the weighted linear LS methods, the estimates of θ can be gotten from the 

measurements φ  by 

 1 1 1ˆ ˆ( )T T− − −= ⋅θ A W A A W φ  (4-19) 

where { }ˆcov=W φ is composed from the sub-matrices { }( )ˆvar mθ  and { }( ) ( )ˆ ˆcov ,m nθ θ  given 

by (4-16) and (4-17) as 

 

{ } { }
{ } { } { }

{ } { } { }

{ } { } { }

(1) (1) (2) (1) ( )

(2) (1) (2) (2) ( )

( ) (1) ( ) (2) ( )

ˆ ˆ ˆcov E

ˆ ˆ ˆ ˆ ˆvar cov , cov ,

ˆ ˆ ˆ ˆ ˆcov , var cov ,

ˆ ˆ ˆ ˆ ˆcov , cov , var

T

M

M

M M M

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

W φ φφ

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

L

L

M M O M

L

 (4-20) 

Calculate the bias and error covariance matrix of θ̂  to evaluate the efficiency. We 

already know the components of φ̂  are efficient from (4-15) and (4-16). Then { }ˆE =φ Aθ  

and 

 { } { }1 1 1 1 1 1
DML

ˆ ˆE ( ) E ( ) ( )T T T T− − − − − −= ⋅ = =θ A W A A W φ A W A A W A θ θ  (4-21) 

 { } 1 1
DML

ˆcov ( )T − −=θ A W A  (4-22) 

The ( , )thi j element of FIM of θ is given by 

 
2 ln ( ; )( ) Eij

i j

p
θ θ

⎧ ⎫∂⎪ ⎪= − ⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭

x θJ θ  (4-23) 

If the ( )mθ is continually taken from θ , which means A  is identical matrix and =φ θ . 

Then  

 { }DML
ˆcov =θ W  (4-24) 
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If the various ( )mx constitute disjoint of data vector x , { }ˆcov φ  becomes block 

diagonal and (4-22) has the form 

 { }
1

( )
DML

1

ˆcov ( )
M

T m
m m

m

−

=

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
∑θ A J θ A  (4-25) 

And 

 ( ) ( )

1

( ; ) ( ; )
M

m m

m

p p
=

=∏x θ x θ  (4-26) 

and 

 
2 2 ( ) ( )

( )

1 1

ln ( ; ) ln ( ; )( ) E E ( )
m mM M

T m
ij m m

m mi j i j

p p
θ θ θ θ= =

⎧ ⎫ ⎧ ⎫∂ ∂⎪ ⎪ ⎪ ⎪= − = − =⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
∑ ∑x θ x θJ θ A J θ A  (4-27) 

Therefore  

 1
DML

ˆcov { } ( )−=θ J θ  (4-28) 

(4-21) and (4-28) show that if ( )mx  constitute disjoint, θ̂  is efficient. Decentralizing 

the estimation procedure does not affect performance level.  

But in general, ( )mx  is not always disjoint, or there is correlation between estimate 

sets. DML maybe introduce degradation in performance. 

6.1.2 DML TDOA/FDOA Estimates 

Assume there are total M sensors, without loss of generality, let thM  sensor be the 

reference one. 1, 1, 1, 1,[ , ,..., , ]T
M M M M M Mτ υ τ υ− −=θ , ( )

, ,[ , ] , 1,..., 1m T
m m M m M m Mτ υ= = = −θ θ  . 

Sensor received signal as 

 ( ) ( ; ) ( ), 1,2,..., 1m m mx t s t w t m M= + = −θ  (4-29) 

and 

 ( ) ( ; ) ( )M Mx t s t w t= +θ  (4-30) 
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Let ( ) [ , ]m T T T
m M=x x x , then ( )mx  is not disjoint, (4-28) maybe not hold. Define 

 11( ; ) ( ) ( )
2 m m

T
m m m m m mq −= − − −θ θx θ x s C x s  (4-31) 

Then 

 
1

ln ( ; ) ( ; )
M

m m m
m

p q
=

=∑x θ x θ  (4-32) 

Here we ignore the 2 1 2

1
(2 ) det ( )N

wπ C
 part, since this part is zero when we take the 

derivative of ( ; )p x θ .  According to [13] 

 

2 2

2
, , ,

2 2

2
, , ,

0
E ( )

0

m m

m M m M m M
m m m

em m

m M m M m M

q q
v

B T
Tq q

v v

τ τ β
γ γ

τ

⎧ ⎫⎡ ⎤∂ ∂
⎪ ⎪⎢ ⎥∂ ∂ ∂ ⎡ ⎤⎪ ⎪⎢ ⎥= − = ⋅ ⋅ =⎨ ⎬ ⎢ ⎥⎢ ⎥∂ ∂ ⎣ ⎦⎪ ⎪⎢ ⎥⎪ ⎪∂ ∂ ∂⎢ ⎥⎣ ⎦⎩ ⎭

J F  (4-33) 

where B is noise bandwidth at receiver input, assumed same for all the receivers; β  is 

“rms radian frequency ” calculated by 

 
22

2
2

( )
(2 )

( )

f S f df

S f df
β π

∞

−∞
∞

−∞

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

∫
∫

 (4-34) 

eT  is “rms integration time” by 

 
22

2
2

( )
(2 )

( )
e

t s t dt
T

s t dt
π

∞

−∞
∞

−∞

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

∫
∫

 (4-35) 

mγ  is the input signal noise ratio. And define 
0

0 e

BT
T

β⎡ ⎤
= ⎢ ⎥

⎣ ⎦
F , and assume this matrix is 

the same for all receivers. 

And define 
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2 2

, , , ,
, 2 2

, , , ,

0
E ( ) ,

0

M M

m M n M m M n M
m n M M

eM M

m M n M m M n M

q q
v

B T m n
Tq q

v

τ τ τ β
γ γ

υ τ υ

⎧ ⎫⎡ ⎤∂ ∂
⎪ ⎪⎢ ⎥∂ ∂ ∂ ∂ ⎡ ⎤⎪ ⎪⎢ ⎥= − = ⋅ ⋅ = ≠⎨ ⎬ ⎢ ⎥⎢ ⎥∂ ∂ ⎣ ⎦⎪ ⎪⎢ ⎥⎪ ⎪∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦⎩ ⎭

J F  (4-36) 

Then for the centralized ML method,  

 

1
CML

1
1

2

1 2( 1) 2( 1)

ˆcov ( ) ( )

( )
( )

( )

M M M

M M M

M M M M M M

γ γ γ γ
γ γ γ γ

γ γ γ γ

−

−

− − × −

=

+⎡ ⎤
⎢ ⎥+⎢ ⎥=
⎢ ⎥
⎢ ⎥+⎣ ⎦

θ J θ

F F F
F F F

F F F

L

L

L L O M

L

 (4-37) 

From the above discussing, we know for the decentralized ML method the covariance 

matrix of each ML is  

 { } [ ] 1( ) 1 ( ) 1
DML

1

1ˆvar ( )
( )

m m
m M

Mγ γ
−− −= = + =

+
θ J θ J J F  (4-38) 

Substitute (4-31) into (4-18), get 

 { }

2 2

, , , ,( ) ( )
,2 2

, , , ,

cov , E ,

M M

m M n M m M n Mm n
m n

M M

m M n M m M n M

q q
v

m n
q q

v

τ τ τ

υ τ υ

⎧ ⎫⎡ ⎤∂ ∂
⎪ ⎪⎢ ⎥∂ ∂ ∂ ∂⎪ ⎪⎢ ⎥= − = ≠⎨ ⎬⎢ ⎥∂ ∂⎪ ⎪⎢ ⎥⎪ ⎪∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦⎩ ⎭

z z J  (4-39) 

Substitute (4-39) into (4-17), get  

 { } 1 1( ) ( ) 1
, , ,

ˆ ˆcov ,
( )( )

m n M
m m M m n m m M

m M n M

γ
γ γ γ γ

− − −⎡ ⎤ ⎡ ⎤= + + =⎣ ⎦ ⎣ ⎦ + +
θ θ J J J J J F  (4-40) 

Since the ( )mθ is continually taken from θ  and disjointed, then 

 

1 1

1 1 1

DML

1 1

1 1 1 2( 1) 2( 1)

1
( ) ( )( )

ˆcov ( )
1

( )( ) ( )

M

M M M M

M

M M M M M M M

γ
γ γ γ γ γ γ

γ
γ γ γ γ γ γ

− −

−

− −

− − − × −

⎡ ⎤
⎢ ⎥+ + +⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

F F

θ

F F

L

M O M

L

(4-41) 
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If assume all the mγ γ≡ , then (4-41) and (4-37) becomes to 

 

1 1

DML
1 1

2( 1) 2( 1)

2
1ˆvar ( )

4
2

M M

γ

− −

− −

− × −

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

F F
θ

F F

L

M O M

L

 (4-42) 

and based on matrix inverse calculation 

 

1 1

CML
1 1

2( 1) 2( 1)

2
1 1ˆvar ( )

4
2

M M

M
Mγ

− −

− −

− × −

⎡ ⎤
− ⎢ ⎥= ⎢ ⎥

⎢ ⎥⎣ ⎦

F F
θ

F F

L

M O M

L

 (4-43) 

Compare (4-43) and (4-42), which are gotten by centralized and de-centralized 

methods respectively, we can see centralized method has smaller variances than de-

centralized one (since ( 1 ) 1M M− < ). That is the possible improvements in the estimate  

of mθ  from use of receivers outside the thm  pair. But for large number of M, this 

improvement is negligible compare with the computation complexity of high-

dimensional cross-correlation. So practically, DML is widely used in the first stage 

TDOA/FDOA estimation. 

6.2 Next Optimal State 

We know the estimation accuracy of emitter location is specified by the FIM of ep  as 

( ) ( )T
geo e =J p H F θ H . The matrices are defined as before. To get optimal ( )geo eJ p , we can 

consider ( )F θ  and H  separately, since they are related with different parameters. ( )F θ  is 

only depend on the signal model and received signal data quality, ( )F θ  can be optimally 

compressed [23]. H  is totally specified by the current sensor local states and referenced 

emitter location. So it is possible to find the next step for sensors based on current data 

quality and relationship of the paired sensors. For simplicity, we talk about one pair first. 
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For one pair 

 

11 12

21 22

2 2
11 11 21 , 11 21

2 2
22 12 22 , 12 22

12 21 11 12 21 22 , 11 22

2

2

T
m m m m

t v

t v

t v

J J
J J

J f g f g f g g

J f g f g f g g
J J f g g f g g f g g

τ υ

τ υ

τ υ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
= + +

= + +

= = + +

J G F G =

 (4-44) 

where 

 

,

,

1 2
11

1 2

1 2
12

1 2

1 1 1 2 2 21 2
21 2 2

1 1 2 2

1 1 1
22 2

1

1

1

( )( ) ( )( )

( )( )

11 12
m m

21 22

e e

e e

T T
e e

T
e

f fg g
f fg g

x x x xg
c r r

y y y yg
c r r

x x x xx xfeg
c r r r r

y y yfeg
c r

τ τ υ

τ υ υ

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎛ ⎞− −

= −⎜ ⎟
⎝ ⎠
⎛ ⎞− −

= −⎜ ⎟
⎝ ⎠
⎛ ⎞⎡ ⎤ ⎡ ⎤− −

= − − −⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

−
= −

G F

u s u s

u s

� �� �

� �

=

2 2 21 2
2

1 2 2

( )( )T
ey y y

r r r
⎛ ⎞⎡ ⎤ ⎡ ⎤−

− −⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

u s� �

 (4-45) 

In chapter 4, the selection object is as 

 { }*

all the given 
arg min some scalar value function of CRLB ( ; )= αβ

β α β  (4-46) 

For the selection problem, argument β  is given and our task is to use some optimal 

method to find the best one among all the given β . For the next optimal state problem, 

argument β  is specified by some researchable set, which is a set of sensor’s future 

position and velocity and it is specified by the sensor’s current position, velocity,  and 

acceleration and time limitation. So rewrite (4-46) as 

 { }*

researchable set of 
arg min some scalar value function of CRLB ( ; )= αβ

β α β  (4-47) 
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And as discussed in chapter 4, the CRLB of emitter location defines an error ellipsoid. 

Our final goal is to minimize some measurement of the error ellipsoid, for example, the 

minimization can be towards the determinant or the trace of the CRLB. That is to define a 

scalar function f  of CRLB or FIM as ( )geofJ J . ( )geofJ J  is also a scalar function of 

position vector s  and velocity vector s�  as ( , )fJ s s& .  Rewrite (4-47) as 

 { }* *

reachable set 
   of  and 

( , ) arg min  ( , )f= J
s s

s s s s
&

& &  (4-48) 

6.2.1 Optimal Criterion 

The relationship of trace and determinant of CRLB and FIM is as following  

 

trace( )
trace( )

det( )

1det( )
det( )

geo
geo

geo

geo
geo

=

=

J
CRLB

J

CRLB
J

 (4-49) 

For two pairs FIM of ep  is the sum of two items assuming there is no sensor sharing 

 1 2geo = +J J J  (4-50) 

Then  

 1 2trace( ) trace( ) trace( )geo = +J J J  (4-51) 

And from Minkowski inequality  

 1 2det( ) det( ) det( )geo ≥ +J J J  (4-52) 

Also 

 1 1 1 1 1 1 1
1 1 1 2 1( )geo

− − − − − − −= − +J J J J J J  (4-53) 

The expression of objective as a function of position and velocity will be too 

complicated to get an explicit solution. We can always use the numerical method to get 
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the optimal one, but it is time consuming. So following we only discuss about some sub-

optimal solutions which may have a clear solution expression. Since the cross term ,fτ υ  

is negligible compare with others, so we ignore this one at the following discussion. 

6.2.2 Minimize Trace of 1
geo
−J  

As we discussed before, maximizing the trace of FIM tends to minimize the trace of 

the CRLB. Objective function rewritten as 

 { }
reachable set of  and 

max  ( , ) trace( )geof =Js s
s s J

&
&  (4-54) 

and 

 ( , ) trace( )f k g k gτ τ υ υ= = ⋅ + ⋅J s s J�
geo  (4-55) 

where 
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2       ( )
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s I u u s s I u u s

s u u u u u u u u I s

� � � �
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 (4-56) 

We can see gυ  is a complex combination of s  and s� . 

(1) Optimal with respect to velocity only 

Rewrite (4-55) as a function of s�  only 

 1 1 1 2 2 2 1 2( ) 2T T Tf kτ= + + +J s s A s s A s s Bs& & & & & & &  (4-57) 

where 
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1 1 12
1

2 2 22
2

1 1 2 2 1 1 2 2
1 2

( )

( )

[ ]
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T T T Tv

k
r
k
r

k
r r

= −

= −

= + − −

A I u u

A I u u

B u u u u u u u u I

 (4-58) 

It is clear that ( )fJ s�  is a quadratic form of  s� .  1A  and 2A  are positive semi-definite 

matrices. So it is a convex problem. Since the maximal value of a convex problem is on 

the boundary of the feasible set, if the feasible set is also convex. So the solution for this 

sub-optimal problem is on the boundary of the feasible velocity set. 

(2) Optimal with respect to position only 

Since the next optimal state is within a few seconds, the small change of ir  can be 

ignored for computation simplicity. Rewrite (4-55) as a function of s  only. 

 
1

1 1 1 2 2 2 1 2 1 1 1 2 2 22 2
1 2 2

2( ) T T T T T Tk kf k
r r r r

τ υ= + − − +J s s A s s A s s s s s s s s s& &  (4-59) 

where 
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 (4-60) 

The properties of 1A  and 2A  depend on the values of distances and velocities. And 

also the convexity of this function is not obvious. There is not an explicit solution for the 

objective function. We have to use the numerical method to find out the optimal value of 

the objective function. 
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6.2.3 Minimize Determinant of 1
geo
−J  

Since 1det( ) 1/ det( )geo geo
− =J J , then the minimization of  determinant of 1

geo
−J  is equal 

to the maximization of determinant of geoJ . Objective function rewritten as 

 { }* *

reachable set of  and 
( , ) arg max  ( , ) det( )geof= =Js s
s s s s J

&
& &  (4-61) 

And 

 2
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2
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t v
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= −

= ⋅

J s s J

F G s s

�

�

geo

 (4-62) 

( , )G s s�  means matrix G  is a function of ( , )s s� . Since det( )G  can be positive or 

negative, rewrite (4-61) as 

 ( ){ }sign ( , )* *

reachable set of  and 
( , ) arg max ( 1) ( , )= − ⋅G s s

s s
s s G s s&

&
& &  (4-63) 

where 

 ( ) 0, if ( , ) 0
sign ( , ) =

1, if ( , ) 0
⎧ >⎪
⎨ <⎪⎩

G s s
G s s

G s s
&

&
&

 (4-64) 

(1) Optimal with respect to velocity only 

Write the elements of G  with respect to velocity as 
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 (4-65) 

where 
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Then G  as a function of velocity can be written as 

 1

2

( )
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

s
G s β

s
�

�
�

 (4-67) 

where  

 11 12 11 12( ) , ( )T T
y x y xg g g g⎡ ⎤= − −⎣ ⎦β a a b b  (4-68) 

Therefore G  is a linear function of velocity. To find the maximal or minimal value 

of G , we can just evaluate the boundary values of the reachable set. And find the one 

satisfies (4-63).  

(2) Optimal with respect to position only 

Also ignore the small change of ir  for computation simplicity. Rewrite G  as a 

function of s  only is a much more complicated than (4-59), There is not an explicit 

solution for the objective function. We have to use the numerical method to find out the 

optimal value of the objective function.  

 

6.3 Sensor Error Effects on Next Optimal State Solution 

Assuming knowledge of ep , the influence of any objective function ( , )fJ s s&  by s  and 

s�  can be seen from 
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T Tf fdf d d∂ ∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

J J
J s s

s s
&

&
 (3-69) 

Since ir  is in the order of km, for simplicity, assume small error of s  will not effect ir .  

6.3.1 Uncertainty on Trace of geoJ  

Rewrite (3-69) as 

 
T T Tg g gdf k d k d k dτ υ υ

τ υ υ
∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

J s s s
s s s

�
�

 (4-70) 

where kτ , kυ , gτ  and gυ  are defined in (4-56).  

 2
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2g
r r
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r
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 (4-71) 

The change in s  is reflected in gτ  through 

 2

11 2

2g
r r

τ∂
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∂
r
rs

 (4-72) 

Therefore || ||gτ∂ ∂s  is on the order of 1 ir .  

And 
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 (4-73) 

Therefore || ||gυ∂ ∂s  is on the order of 31 ir . 

And 

 1 1

2 2

2 T

gυ ⎡ ⎤ ⎡ ⎤∂
= ⎢ ⎥ ⎢ ⎥∂ ⎣ ⎦ ⎣ ⎦

A B s
B A ss

&

&&
 (4-74) 

|| ||gυ∂ ∂s&  is on the order of 2(|| || )i irs& . Substitute all the order into (4-70), we get 
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 2 2
2 3 2

2 ( ) ( )e e

k k k

d d df fdf f f f
c r c r c rτ υ υ≈ ⋅ + ⋅ + ⋅J

s s s�
 (4-75) 

And we know ds  is around 100meters, and ds�  is about 0.02 meters/second. Based 

on all these units/magnitude, we can get an approximate conclusion, the uncertainty of s�  

is more affective than the uncertainty of s  in the computation of trace of FIM. So 

following we only discuss about the effect of velocity uncertainty on ‘next optimal state’ 

solution. 

Due the sensor velocity uncertainty, for the objective function as in (4-54), in fact, we 

are solving 

 { }
reachable set of  and 

max  ( ) g ( , )k g kτ τ υ υ⋅ + ⋅ + Δ
s s

s s s s
&

& &  (4-76) 

where 
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 (4-77) 

Then 

 1 1

2 2

2 T
g Δ⎡ ⎤ ⎡ ⎤∂Δ
= ⎢ ⎥ ⎢ ⎥Δ∂ ⎣ ⎦ ⎣ ⎦

A B s
B A ss

&

&&
 (4-78) 

From (4-77) ( , )gΔ Δs s& &  is a linear function of s& ,  and ( , )gυ Δs s& &  is a convex function of  

s& . So max{ ( )}gυ + Δ
s

s s
&

& &  will have the same solution as max{ ( )}gυs
s

&
& . Which means the 

uncertainty of s&  will not effect the sub-optimal solution of next optimal solution of s& .  
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6.3.2 Uncertainty on Determinant of geoJ  

Following the same discuss as the trace of  geoJ , we can get the same conclusion that 

for this sub-optimal objective method, the uncertainty of velocity also has no effect on 

next optimal state solutions.  
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7 Conclusion and Future Work 

This dissertation develops network-wide optimization over a large number of 

simultaneously participating sensors, enables the sensors to cooperate efficiently and 

effectively, and exploiting the accuracy for emitter location system. The contributions of 

this dissertation are : (1) Explore the importance of signal model in the parameter 

estimation problem; (2) Investigation is performed to find out all the related aspects about 

the emitter location accuracy, giving out formulas about the relative measurements; (3) 

From network management point of view, developing various methods to select and pair 

a subset of sensors to fulfill the system requirement; (4) Modifying the current widely 

used estimation strategy to mitigate the reduce of geo-location accuracy due to the 

sensors’ navigation uncertainty; (5) Finally, giving the concept of next optimal state of 

sensors, giving some sub-optimal solutions and discussing the sensor local states 

uncertainty’s effects on the next optimal solutions.   

Besides these achievements there are still many details to be considered in the future 

research to get more optimal solutions. 

We are giving out the overall point of view about the emitter location estimation 

accuracy formulas and explore some explicit relationship between the accuracy and some 

system parameters. The future work maybe focus on how all these relationship works and 

try to find out if these is a simpler formula about all these aspects.  

The optimal selection and pairing criterion we used in this dissertation is actually a 

sub-optimal selection. But our main contribution is to give an idea and procedure about 

how to make the selection and pairing and what we need to consider when doing the 
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network management. And the simulation result shows even under our sub-optimal 

solution, there are still many improvements against traditional procedure. 

We proposed an updated method to mitigate the reduced accuracy due to the sensors’ 

local states uncertainty. The updated method needs some knowledge of the sensors 

uncertainty to construct the new weighted matrix. And we also found out the regular total 

least square, which is widely used in the problem with inaccurate system information, is 

not suitable for our problem. Future work can focus on how to improve the normal TLS 

method to fix in our problem, and then to improve the estimation accuracy even without 

the knowledge of the probability of sensors’ error. 

  For the next optimal state problem, we investigate that the current information of all 

the measurements can really give some hints about what will be the best state for the next 

time period. And we simplify the objective function at the final stage of solving the 

problem. Since we still need the traditional numerical method to find the solution, we can 

try to find some other better methods, such as the partial swam optimization, which is a 

popular optimization issue in these days, to fasten the searching step and maybe get a 

better solution.  

 Additional, in this dissertation, we consider only about the stationary emitter problem 

for illustration simplicity. We can expend all of our ideas and algorithms to moving 

emitter easily. And also we assume the emitter location as deterministic; if it is random 

we can modify our proposed methods to other estimation methods, such as Bayesian 

theorem, Kalman Fitter.  
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Overall, this dissertation explored the network-wide optimal concept about the 

emitter location problem. And all the ideas can be easily modified to satisfy the practical 

requirements.   
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