
  

Abstract— Growing demand for Indoor Localization and 

Navigation, and the increasing importance of Location Based 

Services (LBS) necessitates methods that can accurately estimate 

the position of mobile devices in environments where GPS does 

not work properly. In this paper, we propose a novel localization 

method that uses spatial sparsity to improve indoor mobile 

positioning. The simulation results show the high performance of 

the proposed method and its robustness to multipath conditions 

compared to other existing methods. The proposed method has 

less complexity, less cost and higher robustness to configuration 

changes compared to common methods such as RSS 

Fingerprinting approaches.  

 

I. INTRODUCTION 

Accurate indoor localization for mobile users is an 

important and challenging issue in the areas of signal 

processing and wireless sensor networks that has received 

increasing attention recently ‎[1]-‎[21]. Poor performance of the 

GPS-based methods in indoor environment (as well as 

sometimes in urban environments) and the large demand for 

Location Based Services (LBS) have motivated researchers to 

design new and feasible methods to carry out indoor 

positioning. Recent advances in smartphones and their 

growing role in human life encourage service providers to use 

it as tool to provide indoor positioning and location-based 

services using the Cellular Networks and/or Wireless Local 

Area Network (WLAN) infrastructures.  

Existing indoor localization systems usually use a wireless 

communication technology and measure location-dependent 

parameters to estimate the position. The proposed wireless 

communication systems include the cellular network (such as 

GSM) ‎[4], WLAN (such as Wi-Fi) ‎[5],‎[6],‎[18], RFID ‎[7], ‎[8], 

Bluetooth ‎[9]‎[10], ‎[11], Ultrasound ‎[12], Infrared ‎[13], ‎[14] 

and etc.   

Indoor location is challenging due to the complicated 

propagation characteristics such as multipath ‎[15]. The classic 

approach to positioning methods is to first estimate location-

dependent signal parameter(s) such as time-of-arrival (TOA), 

time-difference-of-arrival (TDOA), received-signal-strength 

(RSS) and etc. Then in a second step, the collection of these 

estimated parameters is used to estimate the location using 

statistical methods, triangulation or fingerprinting methods 

‎[22]. Although TOA/TDOA provides the best accuracy in free-

space, its classical two-stage approach yields poor location 

accuracy in the presence of the massive multipath conditions 

typically found in indoor localization environments ‎[21]. 

Because of this, RSS is the most widely applied method; even 

though it is also impacted by multipath much work has been 

done to develop means to mitigate such degradations through 

so-called‎“Fingerprinting”. Fingerprinting is a popular method 

based on comparing the RSS measurements to a previously 

prepared RSS Map of the desired area. In some recently 

published papers, various methods such as Compressive 

Sensing have been suggested to use to reduce the amount of 

off-line samples and/or on-line measurements ‎[23]. 

Nonetheless, the fingerprinting approach is not without its own 

disadvantages; it requires a costly and time consuming training 

procedure, requires a complex map generating and matching 

algorithms, it requires creating and storing a database for the 

area of coverage and any changes in physical features of the 

environment or any changes in the configuration of the WLAN 

access points necessitates updating the database ‎[16],‎[17], 

‎[19], ‎[20]. 

In this paper, we proposed a novel TOA-based positioning 

method exploiting spatial sparsity of the mobile device on the 

x-y plane (or x-y-z space) that can largely mitigate the impact 

of the indoor multipath environment.  We use convex 

optimization theory to estimate the location of the mobile 

directly without going through the intermediate stage of TOA 

estimation. The goals of this method are to improve the overall 

accuracy of the positioning compared to classic RSS methods, 

reduce the complexity and cost and also increase the 

robustness to configuration changes compared to 

Fingerprinting, and increase the robustness to multipath 

conditions compared to classic two-stage TOA/TDOA based 

methods. 

If we divide the location space to fine enough grid points, 

then the number of mobiles to be localized is much smaller 

than the number of all grid points. Thus, imagine a sparse grid 

matrix that has a positive number at each one of the grid points 

containing an emitter (i.e implant) and zeros in the rest of the 

grid points; this can be reformed as a sparse vector.  We can 

estimate the location of the targets by extracting the position of 

non-zero elements of the sparsest vector that satisfies the delay 

relationship between transmitted signals and received signals.  

In principle, sparsity of the grid vector can be enforced by 

minimizing its 0 -norm which is defined as the number of 

non-zero elements in the vector. However, since the 0 -norm 

minimization is an NP-hard non-convex optimization problem, 

it is very common to approximate it with 
1
-norm 

minimization, which is a convex optimization problem and 
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also achieves the sparse solution very well. Thus, after 

formulating the problem in terms of the sparse grid vector, we 

can estimate this vector by pushing sparsity using 
1
-norm 

minimization on the grid vector, subject to the TOA 

relationship between the transmitted and received signals at the 

grid point and the wireless access points (APs).  By solving 

this minimization problem, the position of the non-zero 

elements of the sparse grid plane matrix will always be the 

best estimation for the location of the mobile targets.  

In cases when the transmitted signals are not known, we 

can estimate the signal using the Minimum Variance Unbiased 

estimator (MVU). In ‎[25], the authors proposed a general 

target localization method based on compressive sensing. In 

this method, each sensor approximates the transmitted signal 

by its own received signal mapped to each one of the grid 

points. This idea helps to reduce the amount of data 

transmission in the sense of distributed localization but it 

lowers the quality of the estimation since each sensor estimates 

the transmitted signal only based on its own received signal. 

For the purpose of mobile positioning in the case when the 

signal is unknown, we will estimate the transmitted signal in 

the sensor network using all received signals by MVU 

estimator to achieve a higher accuracy. 

The method can be implemented in two forms: (1) a 

Handset-Based form (where the localization process is carried 

out in the mobile) and (2) a Network-Based form (where the 

localization process is completely implemented in the network 

and then the results will be sent to the mobile). As mentioned 

above, contrary to classic methods, we estimate the location of 

the target directly without going through the intermediate stage 

of TOA estimation. We will see this method is very robust and 

very effectively deals with multipath, which is a very serious 

problem in indoor localization due to the many reflections 

from furniture and walls. The multipath makes it appear on 

each channel that there are multiple sources – however, the 

apparent sources are not consistent across all the channels and 

the sparsity constraint acts to discount the effect of the 

multipath ‎[24]. In‎ our‎ method,‎ we‎ don’t‎ need‎ to‎ have‎ time 

synchronization between Mobile device and WLAN access 

points since the method is implicitly based on time difference 

of arrival (TDOA) between received signals. 

II. PROBLEM FORMULATION 

Here, we talk about Network-Based form of localization 

when the mobile device transmits the signal as emitter and 

WLan access points (APs) receive the transmitted signal as 

receiver sensors. It is easily possible to extend the results for 

Handset-Based form when the mobile plays the receiver role.  

Suppose that an emitter transmits a signal and L sensor 

receivers receive that signal. The complex baseband signal 

observed by the lth sensor is  

 

( ) ( ) ( )l l l lr t s t w t   
                        

(1)
 

where l  is the complex path attenuation, ( )s t  is the 

transmitted signal, l  is the signal delay in seconds and ( )lw t

is a white, complex Gaussian noise. If we convert the 

equations to discrete time format, we can assume that each AP 

collects Ns signal samples at sampling frequency 1/s sF T . 

Then we have, 

l l l l r D s w
              

(2) 

where 
1 2[ ( ) , ( ) , ... , ( )]T

Nss t s t s ts  is Ns samples of 

the transmitted signal, 
1 2[ ( ) , ( ) , ... , ( )]T

l l l l Nsr t r t r tr  
is 

the vector containing Ns samples of the received signal by lth 

AP, 
1 2[ ( ) , ( ) , ... , ( )]T

l l l l Nsw t w t w tw  is the noise 

samples vector and Dl  is the time sample shift operator by 

( / )l l sn T  samples. We can write ln

l D D where D  is an 

s sN N
 
permutation matrix defined as [ ] 1 if 1ij i j  D  , 

0, 1[ ] 1N D  and [ ] 0ij D otherwise. 

To simplify the notations, we assume that we are 

interested in estimating the location of the mobile in the two-

dimensional (x-y) plane. It is easily possible to expand the 

localization problem to the three-dimensional case. 

 Now, we allocate a number 
,x yz  to each one of the grid 

points (x,y). Assume that 
,x yz

 
is one for the grid points 

containing a mobile device and zero for the rest of the grid 

points. Thus, the signal vector received by l
th

 sensor (l
th

 AP) 

will be, 

, , , , ,l x y l x y l x y l

x y

z  r D s w
 ,   

(3)
 

where 
, ,l x yD is the time sample shift operator w.r.t sensor l 

assuming that the mobile device is located in the grid point 

(x,y). The summations are over all possible grid points in the 

desired (x,y) range. Now, if we reform all of the grid points in 

a column vector and re-arrange the indices, we will have,
  

, ,

1

.
N

l n l n l n l

n

z 


 r D s w
       

(4)
 

In cases when the transmitted signal is not known, we can 

consider the transmitted signal s as a deterministic unknown 

signal. Then, we can estimate the signal using the Minimum 

Variance Unbiased estimator (MVU) ‎[24] as following: 

1 1

, ,

1

1
ˆ

L

n l n l n l

lL
  



 s D r

                            

(5) 

We define the matrix n  as delay operator w.r.t all L 

sensors (all APs), assuming that the received signal comes 

from the grid point n (in other words, assuming that there is a 

mobile device at grid point n):  

 

1, 1, 2, 2, , ,
s s

n n n n n L n L n N LN
  


   D D D  

Then, we can define  , 1, 2, ,n n Nθ
 

as an 1sLN   

vector including all signal samples transmitted from grid point 

n (when the mobile device is in grid point n) captured by all L 

sensors as, 

 
n n θ s

          
     (6) 



  

In the case when the signal is unknown, we can replace s in 

(6) by ˆ
ns from equation (5). Now, if we arrange all vectors 

nθ  

for n:1...N  as the columns of a matrix Θ  as,  

 
1 2[ ... ]

sN LN NΘ θ θ θ
 ,   

(7) 

where Θ  is the matrix containing the signals transmitted from 

all possible grid points observed by all L access points. Then 

we have, 

  r Θ z w                             (8) 

1 2 1[ ... ]
s

T T T T

L LN r r r r  

1 2 1[ ... ] ,T

N Nz z z z
 

 

where r is the vector of all L received signals, z is the sparse 

vector of z-values assigned to each grid point and w  is the 

noise. To estimate the mobile position, we need to find the 

sparsest vector ẑ  that is well-suited to the equation (8). To do 

that, we can minimize the cost in equation (8) and maximize 

the sparsity (by minimizing 
1
-norm) at the same time to end 

up with a sparse solution. We can solve this problem by 

forming a Basis Pursuit with Inequality Constraints (BPIC) 

problem ‎[26] as following:  

 

1

2

ˆ arg min

.s t 

 


  

z z

Θ z r
       (9) 

 

or regularized Basis Pursuit Denoising (BPDN) problem ‎[26] 

as: 

2 1
ˆ arg min    z Θ z r z     (10)

   

where .
p
is the 

p
-norm defined as 

pp

ip i
v v  . 

 

III. SIMULATION RESULTS AND CONCLUSION 

To evaluate the performance of the proposed method, we 

run Monte Carlo computer simulation with 500 runs each time 

for various numbers of access points (from 4 to 16 APs) and 

various SNRs (0dB , 10dB and 20dB). We simulated the 

massive multipath conditions in a typical 10 10m m  building. 

The APs are mounted at x-y locations (0,0), (10,0), (0,10), 

(10,10), (0,6), (6,0), (10,6), (6,10), (0,4), (4,0), (10,4), (4,10), 

(4,6), (6,4), (6,6), (4,4) respectively and the location of the 

mobile has been chosen randomly. Note that the mobile 

position is not necessarily placed exactly on a grid point. In 

other words, the target may be located in the area between two 

grid points (actually, the assumption that the target is located 

exactly on a grid is very ideal case that rarely happens). Thus, 

when the target is not placed on a grid point, in the best case 

when the algorithm finds the closest grid point to the target 

position, we still have an error in localization. However, we 

can always reduce this error by choosing a finer grid. To 

decrease the computation load in grid search, we can employ 

an iterative algorithm to shrink the search area and increase the 

grid resolution for the new area of interest in each step.   

 Fig. 1 shows the RMS Error vs. number of access points. 

As we expected, the accuracy gets better by increasing the 

number of the receiving sensors. The results show that the 

proposed method has very good performance even with low 

SNRs and with small number of access points; this provides a 

significant advantage over classic two-stage TOA and RSS 

methods. The results also indicate that, in contrary to the 

classic TOA based methods, the proposed approach is a very 

effective and robust tool to deal with multipath issues. 

 

  

 

 
 

Fig. 1. RMS Error for X and Y location (in meters) versus Number of Access 

Points. 
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