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Abstract— In classical TDOA/FDOA emitter location methods, 

pairs of sensors share the received data to compute the CAF and 

extract the ML estimates of TDOA/FDOA. The TDOA/FDOA 

estimates are then transmitted to a common site where they are 

used to estimate the emitter location. However, the two-stage 

method is not necessarily optimal because in the first stage of 

these methods, the TDOA and FDOA are estimated by ignoring 

the fact that all measurements should be consistent with a single 

emitter location. In this paper, we derive a one-stage localization 

method based on spatial sparsity of the grid plane. In this 

method, we directly estimate the location of the emitter without 

going through the intermediate stage of TDOA/FDOA estimation. 

The Monte Carlo simulation results show that the proposed 

method has better performance compared to two-stage classic 

method and also to another available one-stage method named 

Direct Position Determination (DPD). We will show that the 

proposed method is also a very effective and beneficial solution to 

deal with multipath scenarios. 

 
Index Terms— Time Difference of Arrival (TDOA), Frequency 

Difference of Arrival (FDOA), Compressive Sensing (CS), Cross 

Ambiguity Function (CAF). 

 

I. INTRODUCTION 

Passive emitter localization is a challenging issue in 

statistical signal processing. The position can be estimated by 

measuring one or more location-dependent signal parameters. 

One of the most popular and common emitter location 

methods is based on time-difference-of-arrival (TDOA) and 

frequency-difference-of-arrival (FDOA) estimations. In the 

classical approach to this method, FDOA and TDOA are 

estimated from the cross-correlation of the signals received by 

several pairs of sensors  [1]; this is done by computing the 

cross ambiguity function (CAF)  [2] and finding the peak of its 

magnitude surface. Then these TDOA/FDOA estimates are 

used in statistical processing to locate the emitter  [3]. 

However the classic two-stage method is not necessarily 

optimal because in the first stage of these methods, the TDOA 

and FDOA estimates are obtained by ignoring the fact that all 

measurements should be consistent with a single emitter 
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location  [4]. In other words, each stage is itself optimal but the 

cascade of the two stages is not necessarily optimal.  

In this paper, we exploit spatial sparsity of the emitter on 

the x-y plane and use convex optimization theory to estimate 

the location of the emitter directly without going through the 

intermediate stage of TDOA/FDOA estimation. It is obvious 

that in emitter location problems, the number of emitters is 

much smaller than the number of all grid points in a fine grid 

on the x-y plane. Thus, by assigning a positive number to each 

one of the grid points containing an emitter and assigning 

zeros to the rest of the grid points, we will have a very sparse 

grid plane matrix that can be reformed as a sparse vector. 

Since each element of this vector corresponds to one grid 

point in the x-y plane, we can estimate the location of emitters 

by extracting the position of non-zero elements of the sparsest 

vector that satisfies the TDOA/FDOA relationship between 

transmitted signals and received signals. In principle, sparsity 

of the grid vector can be enforced by minimizing its 
0
� -norm 

(i.e., the number of non-zero elements in the grid vector). 

However, since the 
0
� -norm minimization is an NP-hard non-

convex optimization problem, it is very common (e.g in 

compressive sensing problems) to approximate it with 
1
� -

norm minimization, which is a convex optimization problem 

and also achieves the sparse solution very well  [5]. Thus, after 

formulating the problem in terms of the sparse grid vector, we 

can estimate this vector by pushing sparsity using 
1
� -norm 

minimization on the grid vector, subject to the TDOA/FDOA 

relationship between the signals transmitted from the grid 

point and the signals received by the sensors. 

In  [6], the authors suggested a source localization method 

based on TDOA in a multipath channel exploiting the sparsity 

of the multipath channel for estimation of the line-of-sight 

component. In this method, the sensors don’t need to know the 

information on the specific transmitted symbols but, they 

require knowledge of the pulse shape of the transmitted signal. 

In  [7], the authors suggested a compressive-sensing-based 

distributed target localization using TDOA. In this method, 

each sensor approximates the transmitted signal by its own 

received signal mapped to each one of the grid points. This 

idea helps to reduce the amount of data transmission in the 

sense of distributed localization but it lowers the quality of the 

estimation since each sensor estimates the transmitted signal 

just using its own received signal. Also, each sensor computes 

its own location estimation that is not necessarily equal to 

other sensors’ estimations. Weiss and Amar  [4],  [8],  [9] 

developed a single-stage Least-Squares method using TDOA 
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and FDOA, named direct position determination (DPD). Kay 

and Vankayalapati  [10] also derived similar results based on a 

detection theory point of view; the DPD estimator was derived 

as the ML estimator needed for the generalized likelihood 

ratio detector. The performance of the DPD method is better 

than the two-stage classic method (especially for low SNRs). 

However, the simulation results show that DPD does not 

obtain accurate results in the case of multipath scenarios. 

In this paper, contrary to  [6] and  [7], we developed a 

method based on both TDOA and FDOA to take advantage of 

both delay and Doppler shifts. Contrary to [6], our method 

does not need any knowledge of the transmitted signal’s pulse 

shape nor any other a priori information.  Similar to  [7], we 

exploit the grid point spatial sparsity, but we consider the 

transmitted signal as a deterministic unknown signal that will 

be estimated in the sensor network using all received signals. 

Similar to  [10] and  [4], we estimate the emitter location 

directly without going through the intermediate stage of 

TDOA/FDOA estimation. However, the Monte Carlo 

simulation results show the higher performance of the 

proposed method compared to DPD method and classic two-

stage method especially in multipath scenarios.  

 

II. PROBLEM FORMULATION 

Suppose that an emitter transmits a signal and L sensors 

receive that signal. The complex baseband signal observed by 

the l
th

 sensor is  

 
2( ) ( ) ( )lj f t

l l l lr t s t e w t
πα τ= − +

                (1) 

 

where ( )s t  is the transmitted signal, 
l

α  is the complex path 

attenuation, ,  fl  is the Doppler shift, 
l

τ  is the signal delay and 

( )
l

w t is a white, zero mean, complex Gaussian noise. Assume 

that each sensor collects Ns signal samples at sampling 

frequency 1/
s s

F T= . Then, we have 

 

l l l l lα= +r W D s w
          (2) 
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where 
l

r  is the vector containing Ns samples of the received 

signal by l
th

 sensor, s  is Ns samples of the transmitted signal, 

fl  is the Doppler shift and Dl  is the time sample shift operator 

by ( / )
l l s

n Tτ= samples. We can write ln

l =D D where D  is 

an 
s s

N N×
 

permutation matrix defined as 

[ ] 1 if 1
ij

i j= = +D  , 
0, 1[ ] 1

N − =D  and [ ] 0
ij

=D otherwise. 
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Now, we assign a number 
,x y

z  to each one of the grid 

points (x,y). Assume that 
,x y

z is one for the grid points 

containing an emitter and zero for the rest of the grid points. 

Thus, the signal vector received by l
th

 sensor will be 

 

, , , , , , , ,
l x y l x y l x y l x y l

x y

z α= +∑∑r W D s w
         (3) 

 

where 
, ,l x y

W  and 
, ,l x y

D are the Doppler shift and time sample 

shift operators w.r.t sensor l assuming that the emitter is 

located in the grid point (x,y) and the summations are over all 

grid points in the desired (x,y) range. Now, if we reform all of 

the grid points in a column vector and re-arrange the indices, 

we will have
  

, , ,

1

N

l n l n l n l n l

n

z α
=

= +∑r W D s w
     (4) 

 

In (4), we consider the transmitted signal s as a 

deterministic unknown signal (a common signal model in 

localization problems). Then, for each grid point, we estimate 

the transmitted signal using the Minimum Variance Unbiased 

estimator (MVU) as   

1 1

, ,

1

1
ˆ

L

n l n l n l

lL

− −

=

= ∑s D W r

       (5)

 

where ˆ
n

s is the MVU estimate for the transmitted signal from 

grid point n. 

We define the matrix 
n
Γ  as the Doppler and delay 

operator w.r.t all L sensors, assuming that the received signal 

comes from the grid point n (there is an emitter at grid point 

n):  
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Then, we can define { }, 1, 2, ,n n N∈θ … as an 1
s

LN ×  

vector containing all signals received by all L sensors when 

the emitter is in grid point n as 

 

 ˆ
n n n×θ Γ s�

          
 (6) 
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If we arrange all vectors 
n
θ  for n:1...N  as the columns of a 

matrix Θ  as  

 

 
1 2[ ... ]

sN LN N×=Θ θ θ θ
    (7)

 

 

then, we have 

 

 = × +r Θ z w                             (8) 
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where r is the vector of all L received signals, z is the sparse 

vector of z-values assigned to each grid point and w  is the 

noise. Now, we can solve our problem by forming a BPIC 

(Basis Pursuit with Inequality Constraints) problem  [11] as 

following:  

1

2

ˆ arg min

.s t ε

 =


× − ≤

z z

Θ z r
       (9) 

 

or regularized BPDN (Basis Pursuit Denoising) problem  [11] 

as: 

2 1
ˆ arg min λ= × − +z Θ z r z     (10)

   

III. SIMULATION RESULTS 

We examined the performance of the proposed method 

and compared the results using Monte-Carlo computer 

simulations for different scenarios. In this simulation, the 

sampling frequency is 80 kHz and the number of samples is 

equal to 1024. We assumed that 3 moving sensors receive the 

signal from one stationary emitter (the location of the emitter 

has been chosen randomly). Figure (1) shows the RMS Error 

vs. SNR (with 500 runs for each SNR) for estimating the 

location of one emitter in ( )x y−  plane. As we see, the 

proposed method has better performance compared to DPD 

and Classic methods. 

One of the challenging topics in source localization 

problems is emitter location estimation in the presence of 

multipath reflections. We evaluated the capability of the 

proposed method in dealing with multipath scenarios using 

Monte-Carlo simulation. Figure (2) shows the RMS Error vs. 

SNR (with 500 runs for each SNR) for estimating the location 

of one emitter in multipath case. In this case, we assumed that 

4 moving sensors receive the signal from one stationary 

emitter (the locations of the emitter and reflector points have 

been chosen randomly). The following plots show better 

accuracy of the proposed method over DPD and Classic 

methods. As we see, none of the DPD and Classic methods 

provide unbiased estimates for higher SNRs. 

 

 
    (a) 

 
                           (b) 

Figure (1): RMS Error for X and Y (meter) versus SNR (dB) for single-path 

case. 

 

 

 
    (a) 

 
                    (b) 

Figure (2): RMS Error for X and Y (meter) versus SNR (dB) for multipath 

scenario. 
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IV. CONCLUSION 

We developed a one-stage TDOA/FDOA localization 

method based on spatial sparsity of emitters. In this method, 

we assign a non-zero number to each one of the grid points 

containing an emitter and zero to the rest of the grid points. 

Thus, the vector formed from these numbers will be a sparse 

unknown vector that we aim to estimate. Since each element 

of this vector corresponds to one grid point in (x,y) plane, we 

can estimate the location of emitters by extracting the position 

of non-zero elements of the sparsest vector that satisfy the 

TDOA/FDOA relationship between transmitted signals and 

received signals. We evaluated the performance of the 

proposed method using Monte Carlo simulation. Comparing 

the three curves in each plot in Figures (1) and (2) shows that 

the proposed method has better performance (especially when 

there is multi-path) compared to direct position determination 

(DPD) and two-stage Classic localization methods. Simulation 

results show that contrary to DPD and Classic methods, the 

proposed method is a very reliable and strong tool to deal with 

multipath scenarios. 
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