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• Illustrating the Errors in DFT Processing   
• DFT for Sonar Processing



Example #1
Illustrating The Errors in 

DFT Processing



Illustrating the Errors in DFT processing
This example does a nice job of showing the relationships between: 

• the CTFT, 

• the DTFT of the infinite-duration signal, 

• the DTFT of the finite-duration collected samples, 

• and the DFT computed from those samples. 

However, it lacks any real illustration of why we do DFT processing in practice.  

There are many practical applications of the DFT and we’ll look at one in the next
example.
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Let’s imagine we have the following CT Signal: 0)()( >= − bfortuetx bt
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If we sample x(t) at the rate of Fs samples/second – That is, sample every T = 1/Fs 
sec – we get the DT Signal coming out of the ADC is:
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From our FT Table we find the FT of x(t) is:
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Now… analyze what we will get from the DFT processing for this signal…



Now imagine that in theory we have all of the samples x[n]  -∞ < n < ∞ at the ADC 
output. 

Then, in theory the DTFT∞ of this signal is found using the DTFT table to be:

Now, in reality we can “collect” only N < ∞ samples in our computer:
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Necessary to connect the DFT result to the theoretical 
results we’d like to see. 

The DTFT of this collected finite-duration is easily found “by hand”: 
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DTFT∞ Result…(Theory)

For |a| < 1 which we have because: 
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Note that we think of this as follows:
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..and DTFT theory tells us that 
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A form of convolution    (DT Freq. Domain Convolution) 

…and this convolution has a “smearing” effect.

Finally, the DFT of the zero-padded collected samples is…
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Our theory tells us that the zero-padded DFT is nothing more than “points” on 
DTFTN:
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Results from DFT_Relations.m

Plot #1: shows CTFT computed using: 
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Notice that this is not ideally bandlimited, but is essentially bandlimited.

Therefore we expect some aliasing when we sample.



Plot #2: shows DTFT∞ computed using:
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(CTFT rescaled to Ω and then shifted 
by multiples of 2π)

Our theory says that:
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So we should see “replicas” in X∞(Ω) and we do!

We plot TX∞(Ω) to undo the 1/T here

B



We also plot the CTFT against Ω=⎟⎟
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Plot #2:
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The theory in

says we’ll see significant aliasing in X∞(Ω) unless Fs is high enough

The first error – visible in plot #2
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Plot #3 shows DTFTN computed using
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The second error – visible in plot #3
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This “leakage” error is less significant as we 
increase N, the number of collected samples

We see that XN(Ω) shows signs of the “smearing” due to: )()()( Ω∗Ω=Ω ∞ NN WXX

Also called “leakage” error



Plot #4 shows DFT computed using: ∑
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For comparison we also plot XN(Ω)

DTFTN

DFT

Note: We show an artificially small number of DFT points here

D



Theory says… Xzp[k] points should lie on top of XN(Ω)… not X∞(Ω) !!

We see that this is true

If Nzp is too small (i.e. Nzp = N) then there aren’t enough “DFT points” on XN(Ω) 
to allow us to see the real underlying shape of XN(Ω)

This is “Grid Error” and it is less significant when Nzp is large. 

The third error – visible in plot #4
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Example #2
Sonar Processing 
using the  DFT



Radar/Sonar Processing using the DFT
Imagine a stationary sonar and moving target
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“Tx” = Transmit

“Rx” = Receive

Say we transmit a sinusoidal pulse:
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Physics tells us (Doppler effect) that the reflected signal received will be:
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(for radars, this is generally in the kHz range)

(for sonar, this is in the 100’s of Hz range)

(c – speed of propagation ≈ 331m/s 
for sound in air)



Our CTFT theory tells us that the CTFT of the Tx signal will be:
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Also CTFT theory tells us that the CTFT of the Rx signal will be:
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