

State University of New York

EECE 301 Signals & Systems Prof. Mark Fowler

Discussion #11

• Bode Plot Method and Example

We have seen two cases: Real Pole & Real Zero

This allows us to handle all <u>real</u> poles/zeros in the <u>left-hand plane</u>. So we still need a way to handle two other cases.

```
-zero/pole at s = 0
```

-zero/pole complex conjugate pairs -2^{nd} order term

Zero/Pole at s = 0

Zero at
$$s = 0$$
 Pole at $s = 0$
 $H(s) = S$ $H(s) = \frac{1}{s}$

<u>Replace $s \rightarrow j\omega$ and take magnitude:</u>

$$\pm 20\log_{10}(\omega)$$
 vs. $\log_{10}(\omega)$

Line of slope ± 20 that goes through 0dB at $\omega = 1$

Complex Conjugate Pair $(0 \le \zeta \le 1)$

For a 2nd – order pole:

(shown for $\omega_n = 100$)

Note that as ζ gets smaller the pole gets closer to the $j\omega$ axis... which causes a larger peak.

Note that as ζ gets smaller the zero gets closer to the $j\omega$ axis...

which causes a deeper null.

General Steps to "Sequentially" Build Bode Plots

- 1. Factor H(s)... leave complex-root terms as quadratics
- 2. Convert to $j\omega$ form
- 3. Pull out "constants" into a "gain" term
- 4. Combine constant term with " $j\omega$ " terms (if any)
- 5. Identify "break points" and put in ascending order
- 6. Plot constant term with " $j\omega$ " terms at ω values <u>below</u> the <u>lowest</u> "break point"
- 7. At "break point", change slope by ±20dB/decade or ±40dB/decade for 1st order or 2nd order terms, repectively.
 - Repeat this step through <u>ordered</u> list of "breakpoints".
- 8. Make "resonant corrections" for "under damped" 2^{nd} order terms (i.e. when $\zeta < 0.5$).

Example
$$H(s) = \frac{0.1s(s+50)(s+200)}{(s+2)(s^2+2s+100)}$$
 1. Already factored
$$\omega_n = 10 \Rightarrow 2\zeta \omega_n = 2$$
$$\Rightarrow \zeta = 0.1 \Rightarrow complex \ pair$$

<u>2. Convert to *jω*:</u>

$$H(\omega) = \frac{0.1j\omega(j\omega+50)(j\omega+200)}{(j\omega+2)((j\omega)^2+2j\omega+100)}$$

<u>3. Pull Out "Constants":</u> $H(\omega) = \frac{0.1j\omega(j\omega + 50)(j\omega + 200)}{(j\omega + 2)((j\omega)^2 + 2j\omega + 100)}$

$$H(\omega) = \frac{0.1 \times 50 \times 200}{2 \times 100} \left[\frac{j\omega(1 + j\omega/50)(1 + j\omega/200)}{(1 + j\omega/2)(1 + 2j\omega/100 + (j\omega/10)^2)} \right]$$

= 5
Gain Term

<u>4. Combine gain term with *j***w term :</u>**

$$H(\omega) = \left[\frac{(5j\omega)(1+j\omega/50)(1+j\omega/200)}{(1+j\omega/2)(1+2j\omega/100+(j\omega/10)^2)}\right]$$

5. Identify Breakpoints and List in Ascending Order:

$$H(\omega) = \left[\frac{(5j\omega)(1+j\omega/50)(1+j\omega/200)}{(1+j\omega/2)(1+2j\omega/100+(j\omega/10)^2)}\right]$$

List breakpoints in ascending order:

Break Points	Change in slope
2	-20dB/decade – 1 st order term in denominator
10	-40dB/decade -2^{nd} order term in denominator
50	+20dB/decade – 1 st order term in numerator
200	+20dB/decade – 1 st order term in numerator

<u>6. Plot constant term with "*jω*" terms at *ω* values below the lowest "break point" :</u>

-Pick ω value that is (at least) 1 decade below the lowest BP: $\omega = 0.1$

-Evaluate $|5j\omega|$ there in dB:

$$20\log_{10}(5 \times 0.1) = 20\log_{10}(0.5) = -6dB$$

-Plot a point at -6 dB at $\omega = 0.1$

-Draw a line of slope 20dB/decade from this point up to the first BP

7. At "break point", change slope by ±20dB/decade or ±40dB/decade for 1st order or 2nd order terms, repectively. :

Break Points	Change in slope
2	-20dB/decade -1 st order term in denominator
10	-40dB/decade -2 nd order term in denominator
50	+20dB/decade -1 st order term in numerator
200	+20dB/decade -1 st order term in numerator

8. Make "resonant corrections" for "under damped" 2nd order terms (i.e. when $\zeta < 0.5$). :

<u>Finally</u>: Make adjustment for the ζ value from the plot of the 2nd order term: $\zeta = 0.1$ gives peak ≈ 14 dB up

<u>ζ value</u>	<u>Adjustment</u>
0.1	14 dB
0.2	8 dB
0.3	5 dB
0.4	3 dB
0.5	1 dB

Approximate Bode Plot for Example in Notes

Exact Bode Plot for Example

