EECE 301
 Signals \& Systems Prof. Mark Fowler

Discussion \#11

- Bode Plot Method and Example

We have seen two cases: Real Pole \& Real Zero

This allows us to handle all real poles/zeros in the left-hand plane.
So we still need a way to handle two other cases.
-zero/pole at $s=0$
-zero/pole complex conjugate pairs - $2^{\text {nd }}$ order term

Zero/Pole at $s=0$

$$
\begin{array}{cc}
\text { Zero at } s=0 & \text { Pole at } s=0 \\
H(s)=S & H(s)=\frac{1}{s}
\end{array}
$$

Replace $s \rightarrow j \omega$ and take magnitude:

$$
\pm 20 \log _{10}(\omega) \text { vs. } \log _{10}(\omega)
$$

Line of slope ± 20 that goes through 0 dB at $\omega=1$

Complex Conjugate Pair $(0 \leq \zeta \leq 1)$

General Form: Complex pair of poles
$\frac{\omega_{n}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}$

Complex pair of zeros

$$
\frac{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}{\omega_{n}}
$$

ω_{n} breakpoint for $0 \leq \zeta \leq 1$
on $j \omega$ axis $\uparrow \zeta=1$ gives repeated real roots.

$$
\Rightarrow \underbrace{\Rightarrow 20 \log _{10}\left[\left|\left(\frac{j \omega}{\omega_{n}}\right)^{2}+\frac{2 \zeta}{\omega_{n}} j \omega+1\right|\right]} \text { vs. } \log _{10}(\omega)
$$

For a $2^{\text {nd }}-$ order pole:
(shown for $\omega_{n}=100$)

Note that as ζ gets smaller the pole gets closer to the $\boldsymbol{j} \omega$ axis...
which causes a larger peak.

For a $2^{\text {nd }}-$ order zero:
(shown for $\omega_{n}=\mathbf{1 0 0}$)

Note that as ζ gets smaller the zero gets closer to the $\boldsymbol{j} \omega$ axis...
which causes a deeper null.

General Steps to "Sequentially" Build Bode Plots

1. Factor $H(s) \ldots$ leave complex-root terms as quadratics
2. Convert to $j \omega$ form
3. Pull out "constants" into a "gain" term
4. Combine constant term with " $j \omega$ " terms (if any)
5. Identify "break points" and put in ascending order
6. Plot constant term with " $j \omega$ " terms at ω values below the lowest "break point"
7. At "break point", change slope by $\pm 20 \mathrm{~dB} /$ decade or $\pm 40 \mathrm{~dB} /$ decade for $1^{\text {st }}$ order or $2^{\text {nd }}$ order terms, repectively.

- Repeat this step through ordered list of "breakpoints".

8. Make "resonant corrections" for "under damped" $2^{\text {nd }}$ order terms (i.e. when $\zeta<0.5$).

Example $H(s)=\frac{0.1 s(s+50)(s+200)}{(s+2)\left(s^{2}+2 s+100\right)}$ \qquad

$$
\begin{aligned}
\omega_{n}=10 & \Rightarrow 2 \zeta \omega_{n}=2 \quad \\
& \Rightarrow \zeta=0.1 \quad \Rightarrow \text { complex pair }
\end{aligned}
$$

2. Convert to $i \omega$:

$$
H(\omega)=\frac{0.1 j \omega(j \omega+50)(j \omega+200)}{(j \omega+2)\left((j \omega)^{2}+2 j \omega+100\right)}
$$

3. Pull Out "Constants": $\quad H(\omega)=\frac{0.1 j \omega(j \omega+50)(j \omega+200)}{(j \omega+2)\left((j \omega)^{2}+2 j \omega+100\right)}$

$$
H(\omega)=\underbrace{\text { Gain Term }}_{\left.=5-\frac{j}{\frac{0.1 \times 50 \times 200}{2 \times 100}\left[\frac{j \omega(1+j \omega / 50)(1+j \omega / 200)}{(1+j \omega / 2)\left(1+2 j \omega / 100+(j \omega / 10)^{2}\right)}\right]}\right]}
$$

4. Combine gain term with $j \omega$ term :

$$
H(\omega)=\left[\frac{(5 j \omega)(1+j \omega / 50)(1+j \omega / 200)}{(1+j \omega / 2)\left(1+2 j \omega / 100+(j \omega / 10)^{2}\right)}\right]
$$

5. Identify Breakpoints and List in Ascending Order:

$$
H(\omega)=\left[\frac{(5 j \omega)(1+j \omega / 50)(1+j \omega / 200)}{(1+j \omega / 2)\left(1+2 j \omega / 100+(j \omega / 10)^{2}\right)}\right]
$$

List breakpoints in ascending order:

Break Points		Change in slope
2		$-20 \mathrm{~dB} /$ decade $-1^{\text {st }}$ order term in denominator
10		$-40 \mathrm{~dB} /$ decade $-2^{\text {nd }}$ order term in denominator
50		$+20 \mathrm{~dB} /$ decade $-1^{\text {st }}$ order term in numerator
200		$+20 \mathrm{~dB} /$ decade $-1^{\text {st }}$ order term in numerator

6. Plot constant term with " $\mathrm{j} \omega$ " terms at ω values

below the lowest "break point" :

-Pick ω value that is (at least) 1 decade below the lowest BP: $\omega=0.1$
-Evaluate $|5 j \omega|$ there in dB :

$$
20 \log _{10}(5 \times 0.1)=20 \log _{10}(0.5)=-6 d B
$$

-Plot a point at -6 dB at $\omega=0.1$
-Draw a line of slope 20 dB /decade from this point up to the first BP

7. At "break point", change slope by $\pm 20 \mathrm{~dB} /$ decade or

 $\pm 40 \mathrm{~dB} /$ decade for 1st order or 2nd order terms, repectively. :| Break Points | | |
| :---: | :--- | :--- |
| 2 | | Change in slope |
| 10 | | $-40 \mathrm{~dB} /$ decade $-1^{\text {st }}$ ordecade $-2^{\text {nd }}$ orderm in denominator |
| 50 | | $+20 \mathrm{~dB} /$ decade $-1^{\text {st }}$ order term in numerator |
| 200 | | $+20 \mathrm{~dB} /$ decade $-1^{\text {st }}$ order term in numerator |

8. Make "resonant corrections" for "under damped" 2nd order terms (i.e. when $\zeta<0.5$). :
Finally: Make adjustment for the ζ value from the plot of the $2^{\text {nd }}$ order term: $\quad \zeta=0.1$ gives peak $\approx 14 \mathrm{~dB}$ up

ζ value	Adjustment
0.1	14 dB
0.2	8 dB
0.3	5 dB
0.4	3 dB
0.5	1 dB

Approximate Bode Plot for Example in Notes

Exact Bode Plot for Example

