State University of New York

EECE 301
 Signals \& Systems Prof. Mark Fowler

Note Set \#12

- C-T Signals: Motivation for Fourier Series
- Reading Assignment: Section 3.1 of Kamen and Heck

Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).

Ch. 3: Fourier Series \& Fourier Transform

(This chapter is for $\mathrm{C}-\mathrm{T}$ case only) i.e., sinusoids

3.1 Representation in terms of frequency components

- Section 3.1 motivates the following VERY important idea:
"signals can be built from sinusoids"
- Then Sections 3.2 - 3.3 take this idea further to precisely answer

How can we use sinusoids to build periodic signals?

- Then Section 3.4-3.7 take this idea even further to precisely answer

How can we use sinusoids to build more-general non-periodic signals?

Q: Why all this attention to sinusoids?
LTI System
A: Recall "sinusoidal analysis" in RLC circuits:
Fundamental Result: Sinusoid In \Rightarrow Sinusoid Out

And... it is easy to find out how sinusoids go through an LTI system

"Why Study Response to Sinusoids" (not in Ch. 3... See 5.1)

LTI: Linear, Time-Invariant

Q: How does a sinusoid go through an LTI System?

Consider: $x(t)=A \cos \left(\omega_{0} t+\theta\right) \longrightarrow h(t) \longrightarrow \quad y(t)=$?
To make this easier to answer (yes... this makes it easier!!) we use Euler's Formula:

$$
x(t)=A \cos \left(\omega_{0} t+\theta\right)=\frac{A}{2} e^{j\left(\omega_{0} t+\theta\right)}+\frac{A}{2} e^{-j\left(\omega_{0} t+\theta\right)}
$$

The input is now viewed as the sum of two parts... By linearity of the system we can find the response to each part and then add them together.

So we now re-form our question...

Q: How does a complex sinusoid go through an LTI System?

Consider: $x_{1}(t)=\frac{A}{2} e^{j\left(\omega_{0} t+\theta\right)} h(t) \xrightarrow{y(t)=?}$
With convolution as a tool we can now easily answer this question:

$$
\begin{aligned}
& y(t)=x(t) * h(t)=\int_{-\infty}^{\infty} x(t-\tau) h(\tau) d \tau \quad \text { Plug in our input for } x(t-\tau)
\end{aligned}
$$

$$
\begin{aligned}
& =\underbrace{\frac{A}{2} e^{j\left[\omega_{0} t+\theta\right]}} \underbrace{\int_{-\infty}^{\infty} h(\tau) e^{-j \omega_{0} \tau} d \tau} \\
& \text { Use rules for exponentials }
\end{aligned}
$$

So $\ldots y(t)=H\left(\omega_{o}\right) \frac{A}{2} e^{j\left(\omega_{0} t+\theta\right)}$

Complex-valued

Let's work this equation a bit more to get a more useful, but equivalent form...
Because it is complex we can write $H\left(\omega_{o}\right)=\left|H\left(\omega_{o}\right)\right| e^{j \angle H\left(\omega_{o}\right)}$

So using this gives: $\quad y(t)=\left(\left|H\left(\omega_{o}\right)\right| e^{j \angle H\left(\omega_{o}\right)}\right) \frac{A}{2} e^{j\left(\omega_{0} t+\theta\right)}$

$$
=\left(\left|H\left(\omega_{o}\right)\right| \frac{A}{2}\right) e^{j\left(\omega_{0} t+\theta+\angle H\left(\omega_{o}\right)\right)}
$$

Now... we can re-visit our first question...

Q: How does a sinusoid go through an LTI System?

Consider: $x(t)=A \cos \left(\omega_{0} t+\theta\right) \longrightarrow h(t) \longrightarrow y(t)=$?
This is equivalent to:

$$
x(t)=\frac{A}{2} e^{j\left(\omega_{0} t+\theta\right)}+\frac{A}{2} e^{-j\left(\omega_{0} t+\theta\right)} \quad h(t) \quad y(t)=?
$$

And due to linearity and the previous result used twice we have:

$$
y(t)=\left|H\left(\omega_{o}\right)\right| \frac{A}{2} e^{j\left(\omega_{0} t+\theta+\angle H\left(\omega_{o}\right)\right)}+\left|H\left(-\omega_{o}\right)\right| \frac{A}{2} e^{j\left(-\omega_{o} t-\theta+\angle H\left(-\omega_{o}\right)\right)}
$$

Later we'll see that $\left|H\left(\omega_{o}\right)\right|=\left|H\left(-\omega_{o}\right)\right| \quad \angle H\left(-\omega_{o}\right)=-\angle H\left(\omega_{o}\right)$
So we get: $\quad y(t)=\left|H\left(\omega_{o}\right)\right| A \underbrace{\left[\frac{1}{2} e^{j\left(\omega_{0} t+\theta+\angle H\left(\omega_{o}\right)\right)}+\frac{1}{2} e^{-j\left(\omega_{o} t+\theta+\angle H\left(\omega_{o}\right)\right)}\right]}_{\cos \left(\omega_{0} t+\theta+\angle H\left(\omega_{o}\right)\right)}$

So... How does a sinusoid go through an LTI System?
Consider: $x(t)=A \cos \left(\omega_{0} t+\theta\right) \xrightarrow{ } \xrightarrow{ } \quad y(t)=A\left|H\left(\omega_{o}\right)\right| \cos \left(\omega_{o} t+\theta+\angle H\left(\omega_{o}\right)\right)$

The only thing an LTI system does to a sinusoid is change its amplitude and its phase!!!!

But what about when we have more complicated input signals???
We've already seen that we have to do convolution to solve that case!!!

But... if we have a signal that is a sum of sinusoids then we could use this easy result because of linearity and superposition!!!

$$
\begin{aligned}
x(t) & =A_{1} \cos \left(\omega_{1} t+\theta_{1}\right) \\
& +A_{2} \cos \left(\omega_{2} t+\theta_{2}\right)
\end{aligned} \longrightarrow h(t)=A_{1}\left|H\left(\omega_{1}\right)\right| \cos \left(\omega_{1} t+\theta_{1}+\angle H\left(\omega_{1}\right)\right)
$$

So... breaking a signal into sinusoidal parts makes our job EASY!! (As long we know what the $H(\omega)$ function looks like... that is Ch. 5's Problem)

What we look at in Ch. 3 is...
What kind of signals can we use this trick on?
Or in other words... What kinds of signals can we build by adding together sinusoids??!!!

Now...back to Ch. 3!

Let ω_{0} be some given "fundamental" frequency
Q: What can I build from building blocks that looks like:

$$
A_{k} \cos (\underbrace{k \omega_{0}}+\theta_{k}) ?
$$

Only frequencies that are integer multiples of ω_{0}
Ex.: $\omega_{0}=30 \mathrm{rad} / \mathrm{sec}$ then consider $0,3060,90, \ldots$

$$
x(t)=A_{1} \cos (t)+A_{4} \cos \left(4 t+\frac{\pi}{3}\right)+A_{8} \cos \left(8 t+\frac{\pi}{2}\right)
$$

$$
\begin{aligned}
& A_{1}=0.5 \\
& A_{4}=1 \\
& A_{8}=0.5
\end{aligned}
$$

(a)

$$
\begin{aligned}
& A_{1}=1 \\
& A_{4}=0.5 \\
& A_{8}=0.5
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{A}_{1}=1 \\
& \mathbf{A}_{4}=1 \\
& \mathbf{A}_{8}=\mathbf{1}
\end{aligned}
$$

Q: How can we easily convey the information about this signal model?
A: Give a plot that shows the amplitude and phase at each frequency!

Amplitude Spectra
(a)

Phase Spectra
(b)

All three cases are the same

Figure 4.3 Amplitude spectra of the versions of $x(t)$ plotted in Figure 4.2.

So we can write this sum of sinusoids like this:

$$
\begin{equation*}
x(t)=\sum_{k=1}^{N} A_{k} \cos \left(k \omega_{0} t+\theta_{k}\right) \tag{k}
\end{equation*}
$$

Like (3.1) except mine is less general... I force: $\omega_{k}=k \omega_{0}$

So I've got a given set of "frequency components" and my model consists of setting the amplitudes and phases to "desired" values

What if we also let $k=0$, then we get: $\underbrace{A_{0} \cos \left(0+\theta_{0}\right)}$
Its frequency is $0 \mathrm{rad} / \mathrm{sec}(0 \mathrm{~Hz})$

$$
\Rightarrow \text { It is a "DC term" }
$$

= constant, so just use
$A_{0} \& \theta_{0}=0$

$$
x(t)=A_{0}+\sum_{k=1}^{N} A_{k} \cos \left(k \omega_{0} t+\theta_{k}\right) \quad \begin{gathered}
\text { This is called } \\
\text { "DC offset" } \quad\left(A_{0} \& A_{k} \text { Real) }\right) \\
\begin{array}{c}
\text { Trigonometric Form" } \\
\text { (Later we'll let it have } \\
\text { an infinite \# of terms) }
\end{array} \\
\hline
\end{gathered}
$$

\Rightarrow Adding a DC Offset term just moves the whole signal up or down

Trigonometric Form makes the most physical sense but mathematically we often prefer the equivalent "complex exponential form"

Q: How do we get the Complex Exponential Form from the Trigonometric Form?

A: Euler's Formula!

Each Term in the Trigonometric Form gives...
Two Terms in the Complex Exponential Form (Except the A_{0} term)

The details on how to get the Complex Exponential Form:

From direct application of Euler's Formula to each term in the Trigonometric Form of the Fourier Series we get:
$A_{k} \cos \left(k \omega_{0} t+\theta_{k}\right)=\frac{A_{k} e^{j\left(k \omega_{0} t+\theta_{k}\right)}+A_{k} e^{-j\left(k \omega_{0} t+\theta_{k}\right)}}{2}$

$$
\begin{aligned}
& k=1,2,3, \ldots \\
& \omega_{0}>0
\end{aligned}
$$

$$
=\left[\frac{A_{k}}{2} e^{j \theta_{k}}\right] e^{j k \omega_{0} t}+\left[\frac{A_{k}}{2} e^{-j \theta_{k}}\right] e^{-j k \omega_{0} t}
$$

$$
=\left[\frac{A_{k}}{2} e^{j \theta_{k}}\right]_{\not}^{j k \omega_{0} t}+\left[\frac{A_{k}}{2} e^{-j \theta_{k}}\right]_{\not}^{j k\left(-\omega_{0}\right) t}
$$

Positive-Frequency Term
Negative-Frequency Term

Every physical sinusoid consists of...
one positive-frequency term and one negative-frequency term.

So for this complex exponential form we need a slightly different spectrum plot.
Must show both positive and negative frequencies Called "Double-Sided Spectrum"

Example: Consider

$$
x(t)=\cos (t)+0.5 \cos (4 t+\pi / 3)+\cos (8 t+\pi / 2)
$$

which is already in Trigonometric Form of the Fourier Series with $\omega_{0}=1$:

$$
\begin{array}{lll}
A_{1}=1 & A_{4}=0.5 & A_{8}=1 \quad(\text { all others are } 0) \\
\theta_{1}=0 & \theta_{4}=\pi / 3 & \theta_{8}=\pi / 2
\end{array}
$$

Using the results in the previous slides we can re-write this in Complex Exponential Form of the FS as:

$$
\begin{aligned}
& x(t)=\left[0.5 e^{j t}+0.5 e^{-j t}\right]+\left[0.25 e^{j \pi / 3} e^{j 4 t}+0.25 e^{-j \pi / 3} e^{-j 4 t}\right] \\
&+\left[0.5 e^{j \pi / 2} e^{j 8 t}+0.5 e^{-j \pi / 2} e^{-j 8 t}\right]
\end{aligned}
$$

$$
\begin{array}{lll}
c_{1}=0.5 & c_{4}=0.25 e^{j \pi / 3} & c_{8}=0.5 e^{j \pi / 2} \\
c_{-1}=0.5 & c_{-4}=0.25 e^{-j \pi / 3} & c_{-8}=0.5 e^{-j \pi / 2}
\end{array}
$$

$$
\text { (all others are } 0 \text {) }
$$

Both Forms Tell Us the Same Information... sometimes one or the other is more convenient

What do these complex exponential terms look like?

Well... at any fixed time t the function $e^{j \omega t}$ is a complex number with unit amplitude and angle $\omega t \ldots$ so we can view it a a vector in the complex plane:

Now... if we let the time variable "flow"... then this vector will rotate:

Visualizing Rotating Phasors

We know for Euler's Formula that

$$
e^{j \omega t}=\cos (\omega t)+j \sin (\omega t)
$$

Thus... the real part of a rotating phasor is a cosine wave.
The following Web Demo shows this:

Link to Web Demo for Rotating Phasor

1. Open the web page
2. Click on the box at the top labeled One

What you'll see:

1. An Orange phasor rotating around the unit circle
2. The projected Real Part (the "cosine") is shown in Red
3. At the bottom you'll see a vertical axis that represents a time axis and you'll see the Red Real Part repeated and you'll see it tracing out the cosine wave in orange
