State University of New York

EECE 301
 Signals \& Systems Prof. Mark Fowler

Note Set \#13

- C-T Signals: Fourier Series (for Periodic Signals)
- Reading Assignment: Section 3.2 \& 3.3 of Kamen and Heck

Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).

3.2 \& 3.3 Fourier Series

In the last set of notes we looked at building signals using:

$$
N=\text { finite integer }
$$

$$
x(t)=\sum_{k=-N}^{N} c_{k} e^{j k \omega_{0} t} \quad x(t)=A_{0}+\sum_{k=1}^{N} A_{k} \cos \left(k \omega_{0} t+\theta_{k}\right)
$$

We saw that these build periodic signals.
Q: Can we get any periodic signal this way?
A: No! There are some periodic signals that need an infinite number of terms:

Q: Does this now let us get any periodic signal?
A: No! Although Fourier thought so!
See top of (Dirichlet showed that there are some that can't be
p. 155 written in terms of a FS!

But... those will never show up in practice!
So we can write any practical periodic signal as a FS with infinite \# of terms!
So what??!! Here is what!!
We can now break virtually any periodic signal into a sum of simple things... and we already understand how these simple things travel through an LTI system!

So, instead of:

$$
\xrightarrow{x(t)} h(t) \xrightarrow{y(t)=x(t)} * h(t)
$$

We break $x(t)$ into its FS components and find how each component goes through. (See chapter 5)

To do this kind of convolution-evading analysis we need to be able to solve the following:

"Time-domain" model	"Frequency-domain model"
Given time-domain signal model $x(t)$	\longrightarrowFind the FS coefficients $\left\{c_{k}\right\}$

> Converting "time-domain" signal model into
> a "frequency-domain" signal model

Q: How do we find the (Exp. Form) Fourier Series Coefficients?

A: Use this formula (it can be proved but we won't do that!)

$$
c_{k}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} x(t) e^{-j k \omega_{0} t} d t
$$

where: $T=$ fundamental period of $x(t)$ (in seconds)
$\omega_{0}=$ fundamental frequency of $x(t)$ (in rad/second)

$$
=2 \pi / T
$$

$t_{0}=$ any time point (you pick t_{0} to ease calculations)
$k \in$ all integers
Comment: Note that for $k=0$ this gives

$$
c_{0}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} x(t) d t
$$

c_{0} is the " DC offset", which is the time-average over one period

Summarizing rules for converting between the

Time-Domain Model \& the Exponential Form FS Model

$$
c_{k}=\frac{\text { "Analysis" }}{T} \int_{t_{0}}^{t_{0}+T} x(t) e^{-j k \omega_{0} t}
$$

Use signal to figure out the FS Coefficients
"Eat food and figure out recipe"
Time-Domain Model: Frequency-Domain Model:

Use FS Coefficients to "Build" the Signal
"Read recipe and cook food"

There are similar equations for finding the FS coefficients for the other equivalent forms... But we won't worry about them because once you have the c_{k} you can get all the others easily...

Three (Equivalent) Forms of FS and Their Relationships

Example of Using FS Analysis

In electronics you have seen (or will see) how to use diodes and an RC filter circuit to create a DC power supply:

60 Hz Sine wave with around $=D=\{$
110 V RMS

1. This signal goes into the RC filter... what comes out? (Assume zero ILs)
2. How do we choose the desired $R C$ values?

For now we will just find the FS of $x(t) . .$.
Later (Ch. 5) we will use it to analyze what $y(t)$ looks like
The equation for the FS coefficients is: $\quad c_{k}=\frac{1}{T} \int_{0}^{T} x(t) e^{-j k \omega_{0} t} d t \quad \omega_{0}=\frac{2 \pi}{T}$

Choose $t_{0}=0$ here to make things easier:

This kind of choice would make things harder:

Now what is the equation for $x(t)$ over $t \in[0, T]$?

$$
\Rightarrow x(t)=A \sin \left(\frac{\pi}{T} t\right) 0 \leq t \leq T
$$

So using this we get:

$$
\begin{aligned}
c_{k} & =\frac{1}{T} \int_{0}^{T} x(t) e^{-j k \omega_{0} t} d t \\
& =\frac{1}{T} \int_{0}^{T} A \sin \left(\frac{\pi}{T} t\right) e^{-j k\left(\frac{2 \pi}{T}\right) t} d t
\end{aligned} \omega_{0}=\frac{2 \pi}{T}
$$

So... now we "just" have to evaluate this integral as a function of $k .$.

To evaluate the integral: $\quad c_{k}=\frac{1}{T} \int_{0}^{T} A \sin \left(\frac{\pi}{T} t\right) e^{-j k\left(\frac{2 \pi}{T}\right) t} d t$
...we do a Change of Variables. There are three steps:

1. Identify the new variable and sub it into the integrand
2. Determine its impact on the differential
3. Determine its impact on the limits of integration

Step 1: $\tau=\frac{\pi}{T} t$

$$
\sin (\tau) e^{-j k 2 \tau}
$$

Step 2: $d \tau=\frac{\pi}{T} d t \quad \Rightarrow d t=\frac{T}{\pi} d \tau$
Step 3: when $t=0 \Rightarrow \tau=\frac{\pi}{T} 0=0$

$$
\text { when } t=T \Rightarrow \tau=\frac{\pi}{T} T=\pi
$$

$$
\begin{aligned}
c_{k} & =\frac{1}{T} \int_{0}^{T} A \sin \left(\frac{\pi}{T} t\right) e^{-j k\left(\frac{2 \pi}{T}\right) t} d t \\
& =\frac{1}{T} \int_{0}^{\pi} A \sin (\tau) e^{-j k 2 \tau}\left(\frac{T}{\pi} d \tau\right) \\
& =\frac{A}{\pi} \int_{0}^{\pi} \sin (\tau) e^{-j k 2 \tau} d \tau
\end{aligned}
$$

So... to evaluate the integral given by: $\quad c_{k}=\frac{A}{\pi} \int_{0}^{\pi} \sin (\tau) e^{-j k 2 \tau} d \tau$
... use your favorite Table of Integrals (a short one is available on the course web site):

$$
\int e^{a x} \sin (b x) d x=\frac{e^{a x}[a \sin (b x)-b \cos (b x)]}{a^{2}+b^{2}}
$$

A general entry from an integral table

We get our case with: $a=-j 2 k \quad b=1$
So...

$$
c_{k}=\frac{A}{\pi}\left[\frac{e^{-j 2 k \tau}[-j 2 k \sin (\tau)-\cos (\tau)]}{1-4 k^{2}}\right]_{0}^{\pi}
$$

Recall: $\sin (0)=\sin (\pi)=0$

So the sin term above goes away (Finesse the problem... don't use brute force!)

So...

$$
c_{k}=\frac{-A}{\pi\left(1-4 k^{2}\right)}\left[e^{-j 2 k \tau} \cos (\tau)\right]_{0}^{\pi}
$$

Now find the magnitude and phase of the FS coefficients:

$$
c_{k}=\frac{2 A}{\pi\left(1-4 k^{2}\right)}
$$

$$
\left|c_{0}\right|=\frac{2 A}{\pi} \quad\left|c_{k}\right|=\frac{2 A}{\pi\left(4 k^{2}-1\right)} \quad k \neq 0
$$

The spectrum before the rectifier (input is a single sinusoid):

So the two-sided spectrum after the rectifier:

Now you can find the Trigonometric form of FS
Once you have the c_{k} for the Exp. Form, Euler's formula gives the Trig Form as:

$$
x(t)=c_{0}+\sum_{k=1}^{\infty} 2\left|c_{k}\right| \cos \left(k \omega_{0} t+\angle c_{k}\right) \quad \text { General Result!! }
$$

The rectified sine wave has Trig. Form FS:
$\left.\underbrace{x(t)=\frac{2 A}{\pi}+\underbrace{\sum_{k=1}^{\infty}}_{A_{k}} \frac{4 A}{\pi\left(4 k^{2}-1\right)}}_{A_{0}} \cos \left(k \omega_{0} t+\pi\right) \right\rvert\, \underbrace{}_{\theta_{k}}$

The one-sided spectrum is:

So... the input to the RC circuit consists of a superposition of sinusoids... and you know from circuits class how to:

1. Handle a superposition of inputs to an RC circuit
2. Determine how a single sinusoid of a given frequency goes through an RC circuit

Preliminary to "Parseval's Theorem" (Not in book)

Imagine that signal $x(t)$ is a voltage.

$$
\text { If } x(t) \text { drops across resistance } R \text {, the instantaneous power is } p(t)=\frac{x^{2}(t)}{R}
$$

Sometimes we don't know what R is there so we "normalize" this by ignoring the R value:

$$
p_{N}(t)=x^{2}(t)
$$

Once we have a specific R we can always un-normalize via $p_{N}(t) / R$
(In "Signals \& Systems" we will drop the N subscript)
Recall: power $=$ energy per unit time $\Rightarrow p(t)=\frac{d E(t)}{d t} \Rightarrow \underbrace{d E(t)=x^{2}(t) d t}_{\text {differential increment }}$
\Rightarrow Energy in one period $=\int_{t_{0}}^{T+t_{0}} d E(t)=\int_{t_{0}}^{T+t_{0}} x^{2}(t) d t$ of energy
$\begin{aligned} \text { The Total Energy } & =\int_{-\infty}^{\infty} x^{2}(t) d t \\ & =\infty \text { for a periodic signal }\end{aligned}$

Recall: power = energy per unit time
Average power over one period $=\frac{\text { Energy in One Period }}{T}$

$$
\square P=\frac{1}{T} \int_{t_{0}}^{T+t_{0}} x^{2}(t) d t \quad \begin{gathered}
\text { Often just called } \\
\text { "Average Power" }
\end{gathered}
$$

For periodic signals we use the average power as measure of the "size" of a signal.

The Average Power of practical periodic signals is finite and non-zero. (Recall that the total energy of a periodic signal is infinite.)

Parseval's Theorem

We just saw how to compute the average power of a periodic signal if we are given its time-domain model:

$$
P=\frac{1}{T} \int_{t_{0}}^{T+t_{0}} x^{2}(t) d t
$$

Q: Can we compute the average power from the frequency domain model
A: Parseval's Theorem says... Yes!

$$
\left\{c_{k}\right\}, \quad k=0, \pm 1, \pm 2, \ldots
$$

Parseval's theorem gives this equation

$$
P=\sum_{k=-\infty}^{\infty}\left|c_{k}\right|^{2}
$$

as an alternate way to compute the average power of a periodic signal whose complex exponential FS coefficients are given by c_{k}

Another way to view Parseval's theorem is this equality:

$$
\frac{1}{T} \int_{t_{0}}^{t_{0}+T} x^{2}(t) d t=\sum_{k=-\infty}^{\infty}\left|c_{k}\right|^{2}
$$

Interpreting Parseval's Theorem

$$
\underbrace{\frac{1}{T} \int_{t_{0}}^{t_{0}+T} x^{2}(t) d t}=\underbrace{\sum_{k=-\infty}^{\infty}\left|c_{k}\right|^{2}}
$$

$x^{2}(t)=$ power at time t (includes effects of all frequencies)

We can find the power in the time domain by "adding up" all the "powers at each time"
$\left|c_{k}\right|^{2}=$ power at frequency $k \omega_{0}$ (includes effects of all times)

We can find the power in the frequency domain by adding up all the "powers at each frequency"

