

State University of New York

EECE 301 Signals & Systems Prof. Mark Fowler

Note Set #13

- C-T Signals: Fourier Series (for Periodic Signals)
- Reading Assignment: Section 3.2 & 3.3 of Kamen and Heck

Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).

3.2 & 3.3 Fourier Series

We saw that these build <u>periodic</u> signals.

Q: Can we get <u>any</u> periodic signal this way?

A: No! There are some periodic signals that need an *infinite* number of terms:

Q: Does *this* now let us get <u>any periodic</u> signal?

A: No! Although Fourier thought so!

So we can write any <u>practical</u> periodic signal as a FS with infinite # of terms!

So what??!! Here is what!!

We can now break virtually <u>any</u> periodic signal into a sum of simple things... and we already understand how these simple things travel through an LTI system! So, instead of:

$$x(t) \qquad h(t) \qquad y(t) = x(t) * h(t)$$

We break x(t) into its FS components and find how each component goes through. (See chapter 5)

To do this kind of convolution-evading analysis we need to be able to solve the following:

Q: How do we find the (Exp. Form) Fourier Series Coefficients?

A: <u>Use this formula</u> (it can be proved but we won't do that!)

$$c_{k} = \frac{1}{T} \int_{t_{0}}^{t_{0}+T} x(t) e^{-jk\omega_{0}t} dt$$

Integrate over <u>any</u> complete period

Slightly different than book... It uses $t_0 = 0$.

where: T = fundamental period of x(t) (in seconds)

 ω_0 = fundamental frequency of x(t) (in rad/second)

 $= 2\pi/T$

 $t_0 = \underline{any}$ time point (you pick t_0 to ease calculations)

 $k \in$ all integers

<u>Comment:</u> Note that for k = 0 this gives

$$c_0 = \frac{1}{T} \int_{t_0}^{t_0 + T} x(t) dt$$

 c_0 is the "DC offset", which is the time-average over one period

Summarizing rules for converting between the Time-Domain Model & the Exponential Form FS Model

$c_k = \frac{\frac{\text{``Analysis''}}{1}}{T} \int_{t_0}^{t_0+T} x(t) e^{-jk\omega_0 t}$	$\frac{\text{"Synthesis"}}{x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}}$
Use signal to figure out the FS Coefficients	Use FS Coefficients to "Build" the Signal
"Eat food and figure out recipe"	"Read recipe and cook food"
Time-Domain Model:	The Periodic Signal Itself
Frequency-Domain Model:	The FS Coefficients

There are similar equations for finding the FS coefficients for the other equivalent forms... But we won't worry about them because once you have the c_k you can get all the others easily...

Three (Equivalent) Forms of FS and Their Relationships

Example of Using FS Analysis

In electronics you have seen (or will see) how to use diodes and an RC filter circuit to create a DC power supply:

i.e., over the range Now what is the equation for x(t) over $t \in [0,T]$? of integration $\Rightarrow x(t) = A \sin\left(\frac{\pi}{T}t\right) \quad 0 \le t \le T$ Determined by looking at the plot $\hat{x}(t)$ A t_0 $t_0 + T$ So using this we get: $c_k = \frac{1}{T} \int_0^T x(t) e^{-jk\omega_0 t} dt$ $= \frac{1}{T} \int_0^T A \sin\left(\frac{\pi}{T}t\right) e^{-jk\left(\frac{2\pi}{T}\right)^t} dt$ $\omega_0 = \frac{2\pi}{T}$

So... now we "just" have to evaluate this integral as a function of k...

To evaluate the integral:
$$c_k = \frac{1}{T} \int_0^T A \sin\left(\frac{\pi}{T}t\right) e^{-jk\left(\frac{2\pi}{T}\right)t} dt$$

... we do a <u>Change of Variables</u>. There are three steps:

- 1. Identify the new variable and sub it into the integrand
- 2. Determine its impact on the differential
- 3. Determine its impact on the limits of integration

$$\underbrace{\text{Step 1:}}_{\tau = \frac{\pi}{T}t} \quad \operatorname{sin}(\tau)e^{-jk^{2}\tau}$$

$$\underbrace{\text{Step 2:}}_{T = \frac{\pi}{T}dt} \quad \Rightarrow dt = \frac{T}{\pi}d\tau$$

$$\underbrace{\text{Step 2:}}_{T = \frac{\pi}{T}dt} \quad \Rightarrow dt = \frac{T}{\pi}d\tau$$

$$\underbrace{\text{Step 3: when } t = 0 \Rightarrow \quad \tau = \frac{\pi}{T}0 = 0$$

$$\operatorname{when } t = T \Rightarrow \quad \tau = \frac{\pi}{T}T = \pi$$

$$\begin{aligned} = \frac{A}{\pi}\int_{0}^{\pi}\sin(\tau)e^{-jk^{2}\tau}d\tau$$

So... to evaluate the integral given by:

$$c_k = \frac{A}{\pi} \int_0^\pi \sin(\tau) e^{-jk2\tau} d\tau$$

... use your favorite <u>Table of Integrals</u> (a short one is available on the course web site):

$$\int e^{ax} \sin(bx) dx = \frac{e^{ax} [a \sin(bx) - b \cos(bx)]}{a^2 + b^2}$$
A general entry from an integral table

We get our case with: a = -j2k b = 1

So...

$$c_{k} = \frac{A}{\pi} \left[\frac{e^{-j2k\tau} [-j2k\sin(\tau) - \cos(\tau)]}{1 - 4k^{2}} \right]_{0}^{\pi}$$
Recall: $\sin(0) = \sin(\pi) = 0$
So the sin term above goes away
(Finesse the problem... don't use brute force!)

So... $c_k = \frac{-A}{\pi(1-4k^2)} \left[e^{-j2k\tau} \cos(\tau) \right]_0^{\pi}$

So...

$$c_{k} = \frac{-A}{\pi(1-4k^{2})} \begin{bmatrix} e^{-j2\pi k} \cos(\pi) - e^{-j2k0} \cos(0) \end{bmatrix}$$

$$= 1 = -1 = 1 = 1$$
So...

$$c_{k} = \frac{2A}{\pi(1-4k^{2})}$$
FS coefficient for full-wave rectified sine wave of amplitude A

Things you would never know if you can't work <u>arbitrary</u> cases Notes: 1. This does not depend on *T*

2. c_k is proportional to A

- So: 1. If you change the input sine wave's frequency the c_k does not change
 - 2. If you, say, double A... you'll double c_k

Now find the magnitude and phase of the FS coefficients:

$$c_k = \frac{2A}{\pi(1-4k^2)}$$

$$|c_{0}| = \frac{2A}{\pi} \qquad |c_{k}| = \frac{2A}{\pi(4k^{2}-1)} \quad k \neq 0$$

$$\angle c_{0} = 0 \qquad \angle c_{k} = \pm \pi \qquad k \neq 0$$
Because c_{0} is real and > 0

$$Im \qquad c_{0} \qquad Re \qquad Im \qquad +\pi \qquad Re \qquad -\pi \qquad Re$$

Now you can find the Trigonometric form of FS

Once you have the c_k for the Exp. Form, Euler's formula gives the Trig Form as:

Preliminary to "Parseval's Theorem" (Not in book)

Imagine that signal x(t) is a voltage.

If x(t) drops across resistance *R*, the instantaneous power is $p(t) = \frac{x^2(t)}{D}$

Sometimes we don't know what R is there so we "normalize" this by ignoring the R value: $p_N(t) = x^2(t)$

Once we have a specific R we can always un-normalize via $\frac{p_N(t)}{R}$

(In "Signals & Systems" we will drop the *N* subscript)

Recall: power = energy per unit time $\Rightarrow p(t) = \frac{dE(t)}{dt} \Rightarrow dE(t) = x^2(t)dt$ (1 W = 1 J/s)

differential increment

$$\Rightarrow$$
 Energy in one period $= \int_{t_0}^{T+t_0} dE(t) = \int_{t_0}^{T+t_0} x^2(t) dt$

The Total Energy =
$$\int_{-\infty}^{\infty} x^2(t) dt$$

= ∞ for a periodic signal

Recall: power = energy per unit time

For periodic signals we use the average power as measure of the "size" of a signal.

The Average Power of practical periodic signals is finite and non-zero.

(Recall that the total energy of a periodic signal is infinite.)

Parseval's Theorem

We just saw how to compute the average power of a periodic signal if we are given its <u>time-domain</u> model: $1 e^{T+t}$

$$P = \frac{1}{T} \int_{t_0}^{T+t_0} x^2(t) dt$$

Q: Can we compute the average power from the frequency domain model

A: Parseval's Theorem says... Yes!

$$\{c_k\}, k = 0, \pm 1, \pm 2, \dots$$

Parseval's theorem gives this equation

$$P = \sum_{k=-\infty}^{\infty} \left| c_k \right|^2$$

as an alternate way to compute the average power of a periodic signal whose complex exponential FS coefficients are given by c_k

Another way to view Parseval's theorem is this equality:

$$\frac{1}{T} \int_{t_0}^{t_0+T} x^2(t) dt = \sum_{k=-\infty}^{\infty} |c_k|^2$$

Interpreting Parseval's Theorem

the "powers at each time"

the "powers at each frequency"