State University of New York

## EECE 301 <br> Signals \& Systems Prof. Mark Fowler

Note Set \#15

- C-T Signals: Fourier Transform Properties
- Reading Assignment: Section 3.6 of Kamen and Heck


## Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).


## Fourier Transform Properties

> Note: There are a few of these we won't cover.... see Table on Website or the inside front cover of the book for them.

## I prefer that you use the tables on the website... they are better than the book's

As we have seen, finding the FT can be tedious (it can even be difficult)
But...there are certain properties that can often make things easier.
Also, these properties can sometimes be the key to understanding how the FT can be used in a given application.

So... even though these results may at first seem like "just boring math" they are important tools that let signal processing engineers understand how to build things like cell phones, radars, mp3 processing, etc.

1. Linearity (Supremely Important)

$$
\begin{aligned}
& \text { If } \quad x(t) \leftrightarrow X(\omega) \quad \& \quad y(t) \leftrightarrow Y(\omega) \\
& \text { then }[a x(t)+b y(t)] \leftrightarrow[a X(\omega)+b Y(\omega)]
\end{aligned}
$$

Another way to write this property:

$$
\mathscr{F}\{a x(t)+b y(t)\}=a \mathscr{F}\{x(t)\}+b \mathscr{F}\{y(t)\}
$$

To see why: $\mathscr{F}\{a x(t)+b y(t)\}=\int_{-\infty}^{\infty}[a x(t)+b y(t)] e^{-j \omega t} d t<\begin{gathered}\text { Use Defn } \\ \text { of FT }\end{gathered}$


Example Application of "Linearity of FT": Suppose we need to find the FT of the following signal...


Finding this using straight-forward application of the definition of FT is not difficult but it is tedious:

$$
\mathscr{F}\{x(t)\}=\int_{-2}^{-1} e^{-j \omega t} d t+2 \int_{-1}^{1} e^{-j \omega t} d t+\int_{1}^{2} e^{-j \omega t} d t
$$

So... we look for short-cuts:

- One way is to recognize that each of these integrals is basically the same
- Another way is to break $x(t)$ down into a sum of signals on our table!!!

Break a complicated signal down into simple signals before finding FT:


Mathematically we write: $x(t)=p_{4}(t)+p_{2}(t) \quad X(\omega)=P_{4}(\omega)+P_{2}(\omega)$
From FT Table we have a known result for the FT of a pulse, so...

$$
X(\omega)=4 \operatorname{sinc}\left(\frac{2 \omega}{\pi}\right)+2 \operatorname{sinc}\left(\frac{\omega}{\pi}\right)
$$

Note: If $c>0$ then $x(t-c)$ is a delay of $x(t)$
So... what does this mean??
First... it does nothing to the magnitude of the FT: $\left|X(\omega) e^{-j \omega c}\right|=|X(\omega)|$
That means that a shift doesn't change "how much" we need of each of the sinusoids we build with

Second... it does change the phase of the FT: $\angle\left\{X(\omega) e^{-j c \omega}\right\}=\angle X(\omega)+\angle e^{-j c \omega}$

$$
=\angle X(\omega)+\underbrace{c \omega}
$$

Line of slope -c
Phase shift increases linearly
This gets added to original phase as the frequency increases

Shift of Time Signal $\Leftrightarrow$ "Linear" Phase Shift of Frequency Components

## Example Application of Time Shift Property: Room acoustics.

Practical Questions: Why do some rooms sound bad? Why can you fix this by using a "graphic equalizer" to "boost" some frequencies and "cut" others?
Very simple case of a single reflection:

$c>0$ Delayed signal
$0<\alpha<1$ Attenuated signal

So... You hear: $y(t)=x(t)+\alpha x(t-c)$ instead of just $x(t)$
Use linearity and time shift to get the FT at your ear:

$$
\begin{aligned}
Y(\omega)=\mathscr{F}\{x(t)+\alpha x(t-c)\} & =\mathscr{F}\{x(t)\}+\alpha \mathscr{F}\{x(t-c)\} \\
& =X(\omega)+\alpha X(\omega) e^{-j \omega c}
\end{aligned}
$$

$$
Y(\omega)=X(\omega)\left[1+\alpha e^{-j \omega c}\right]
$$

This is the FT of what you hear...
It gives an equation that shows how the reflection affects what you hear!!!!

The big picture!

$$
|Y(\omega)|=|X(\omega)| \left\lvert\, \underbrace{\left|1+\alpha e^{-j \rho \mid}\right|}_{\equiv|H(\omega)|} \begin{gathered}
|H(\omega)| \begin{array}{c}
\text { changes } \\
\text { shape of }|X(\omega)|
\end{array}
\end{gathered}\right.
$$

The room changes how much of each frequency you hear...

Let's look closer at $|H(\omega)|$ to see what it does...

Using Euler’s formula gives Rectangular Form

$$
|H(\omega)|=\left|1+\alpha e^{-j c \omega}\right|=|1+\alpha \cos (c \omega)-j \alpha \sin (c \omega)|
$$

$$
=\sqrt{(1+\alpha \cos (\omega c))^{2}+\alpha^{2} \sin ^{2}(\omega c)}=\sqrt{1+2 \alpha \cos (\omega c)+\alpha^{2} \cos ^{2}(\omega c)+\alpha^{2} \sin ^{2}(\omega c)}
$$

$$
\operatorname{mag}=\sqrt{(\mathrm{Re})^{2}+(\mathrm{Im})^{2}}
$$

$|H(\omega)|=\sqrt{\left(1+\alpha^{2}\right)+2 \alpha \cos (\omega c)}$

## The big picture... revisited:

$$
|Y(\omega)|=|X(\omega)| \sqrt{\left(1+\alpha^{2}\right)+2 \alpha \cos (\omega c)}
$$



Effect of the room... what does it look like as a function of frequency?? The cosine term makes it wiggle up and down... and the value of $c$ controls how fast it wiggles up and down

| Spacing $=1 / c \mathrm{~Hz}$ |
| :---: |
| "Dip-to-Dip" |$\quad$| $c$ controls spacing between dips/peaks |
| :--- |
| $\alpha$ controls depth/height of dips/peaks |

The next 3 slides explore these effects
What is a typical value for delay c???
Speed of sound in air $\approx 340 \mathrm{~m} / \mathrm{s}$
Typical difference in distance $\approx 0.167 \mathrm{~m}\} c=\frac{0.167 \mathrm{~m}}{340 \mathrm{~m} / \mathrm{s}}=0.5 \mathrm{msec}$
$\rightarrow$ Spacing $=2 \mathrm{kHz}$

Attenuation: $\alpha=0.2$ Delay: $c=0.5 \mathrm{~ms}$ (Spacing $=1 / 0.5 \mathrm{e}-3=2 \mathrm{kHz})$


FT magnitude at the speaker (a made-up spectrum... but kind of like audio)




FT magnitude at your ear... room gives slight boosts and cuts at closely spaced locations

Longer delay causes closer spacing... so more dips/peaks over audio range!

Attenuation: $\alpha=0.8 \quad$ Delay: $c=0.5 \mathrm{~ms}$ (Spacing $=1 / 0.5 \mathrm{e}-3=2 \mathrm{kHz})$


Stronger reflection causes bigger boosts/cuts!!

Attenuation: $\alpha=0.2$ Delay: $c=0.1 \mathrm{~ms}$ (Spacing $=1 / 0.1 \mathrm{e}-3=10 \mathrm{kHz}$ )


Shorter delay causes wider spacing... so fewer dips/peaks over audio range!

```
f=0:100:20000; % Freq range: 0 Hz to 20 kHz
w=2* pi*f; % convert to rad/sec
```

$\mathrm{H}=\mathbf{a b s}\left(1+\operatorname{atten}^{*} \exp \left(-\mathrm{j}^{*} \mathbf{w}^{*}\right.\right.$ delay $)$ ); \% Compute Room Effect
\% Make up a fictitious audio spectrum
$X=50000^{*} \mathrm{w} . /\left(\left(2^{*} \mathrm{pi}^{*} 2000+\mathrm{w}\right)\right) .^{\wedge}$;
\% Now do plots
subplot $(3,1,1) \quad \%$ splits figure into 3 subplots, pick $1^{\text {st }}$ one
$\operatorname{plot}(\mathbf{f} / \mathbf{1 0 0 0}, \mathrm{X}) \quad \%$ note f converted into k Hz
xlabel('f (kHz)')
ylabel('Original Audio Spectrum')
axis([02002]) \% set axis ranges as desired
grid \% put grid lines on
subplot(3,1,2) \% splits figure into 3 subplots, pick $2^{\text {nd }}$ one
$\operatorname{plot}(\mathbf{f} / \mathbf{1 0 0 0}, \mathrm{H})$
xlabel('f (kHz)')
ylabel('Room Effect')
axis([0 2002 2])
grid
subplot(3,1,3) \% splits figure into 3 subplots, pick $3^{\text {rd }}$ one
$\operatorname{plot}\left(\mathbf{f} / \mathbf{1 0 0 0}, \mathbf{H} .{ }^{*} \mathbf{X}\right)$
xlabel('f (kHz)')
ylabel('Changed Audio Spectrum')
axis([0 2002 2])
grid

## 3. Time Scaling (Important)

Q: If $x(t) \leftrightarrow X(\omega)$, then $x(a t) \leftrightarrow$ ??? for $a \neq 0$


An interesting "duality"!!!

To explore this FT property...first, what does $x(a t)$ look like?

$|a|>1$ makes it "wiggle" faster $\Rightarrow$ need more high frequencies
$|a|<1$ makes it "wiggle" slower $\Rightarrow$ need less high frequencies

When $|\boldsymbol{a}|>\mathbf{1} \Rightarrow|\mathbf{1} / \boldsymbol{a}|<\mathbf{1}$
Time Signal is Squished $\quad x(a t) \leftrightarrow \frac{1}{|a|} X\left(\frac{\omega}{a}\right) \underbrace{\text { and Reduced Vertically }}_{\text {FT is Stretched Horizontally }}$


Original Signal \& Its FT


## Squished Signal \& Its FT




Rough Rule of Thumb we can extract from this property:

$$
\begin{aligned}
& \uparrow \text { Duration } \Rightarrow \downarrow \text { Bandwidth } \\
& \downarrow \text { Duration } \Rightarrow \uparrow \text { Bandwidth }
\end{aligned}
$$

4. Time Reversal (Special case of time scaling: $a=-1$ )

$$
x(-t) \leftrightarrow X(-\omega)
$$

_ double conjugate
Note: $X(-\omega)=\int_{-\infty}^{\infty} x(t) e^{-j(-\omega) t} d t=\overline{\int_{-\infty}^{\infty} x(t) e^{+j \omega t} d t} \quad=$ "No Change"

$$
\begin{aligned}
& =\overline{\int_{-\infty}^{\infty} \overline{x(t)} e^{+j \omega t}} \overleftarrow{d t}=x(t) \text { if } x(t) \text { is real }
\end{aligned}
$$

$$
=\overline{\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t}=\overline{X(\omega)}
$$

So if $x(t)$ is real, then we get the special case:
Recall: conjugation doesn't change abs. value but negates the angle

$$
\begin{gathered}
|\overline{X(\omega)}|=|X(\omega)| \\
\angle \overline{X(\omega)}=-\angle X(\omega)
\end{gathered}
$$

## 5. Multiply signal by $t^{n}$

$$
\left.t^{n} x(t) \leftrightarrow(j)^{n} \frac{d^{n} X(\omega)}{d \omega^{n}}\right] n=\text { positive integer }
$$

This property is mostly useful for finding the FT of typical signals.

Example Find $X(\omega)$ for this $x(t)$


So... we can use this property as follows:

$$
X(\omega)=j \frac{d}{d \omega} P_{2}(\omega)=j \frac{d}{d \omega}\left(2 \operatorname{sinc}\left(\frac{\omega}{\pi}\right)\right)
$$

Now... how do you get the derivative of the sinc???

Use the definition of sinc and then use the rule for the derivative of a quotient you learned in Calc I:

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \frac{d f(x)}{d x}-f(x) \frac{d g(x)}{d x}}{g^{2}(x)}
$$

## 6. Modulation Property Super important!!! Essential for understanding practical issues that arise in communications, radar, etc.

There are two forms of the modulation property...

1. Complex Exponential Modulation ... simpler mathematics, doesn't directly describe real-world cases
2. Real Sinusoid Modulation... mathematics a bit more complicated, directly describes real-world cases

Euler's formula connects the two... so you often can use the Complex
Exponential form to analyze real-world cases

## Complex Exponential Modulation Property

$$
x(t) e^{j \omega_{0} t} \leftrightarrow X\left(\omega-\omega_{0}\right)
$$

Multiply signal by a complex sinusoid


Shift the FT
in frequency


## Real Sinusoid Modulation

Based on Euler, Linearity property, \& the Complex Exp. Modulation Property

$$
\begin{aligned}
& \mathscr{F}\left\{x(t) \cos \left(\omega_{0} t\right)\right\}=\mathscr{F}\left\{\frac{1}{2}\left[x(t) e^{j \omega_{0} t}+x(t) e^{-j \omega_{0} t}\right]\right\} \\
&=\frac{1}{2}\left[\mathscr{F}\left\{\left[x(t) e^{j \omega_{0} t}\right]\right\}+\mathscr{F}\left\{\left[x(t) e^{-j \omega_{0} t}\right]\right]\right\} \text { Euler’s Formula } \\
&=\frac{1}{2}\left[X\left(\omega-\omega_{o}\right)+X\left(\omega+\omega_{o}\right)\right] \\
& \text { The Result: } \quad x(t) \cos \left(\omega_{0} t\right) \leftrightarrow \frac{1}{2}\left[X\left(\omega+\omega_{0}\right)+X\left(\omega-\omega_{0}\right)\right] \\
& \text { Shift Down Shift Up }
\end{aligned}
$$

Related Result: $\quad x(t) \sin \left(\omega_{0} t\right) \leftrightarrow \frac{j}{2}\left[X\left(\omega+\omega_{0}\right)-X\left(\omega-\omega_{0}\right)\right]$
Exercise: $x(t) \cos \left(\omega_{0} t+\phi_{0}\right) \leftrightarrow$ ??

## Visualizing the Result

$$
\underbrace{x(t) \cos \left(\omega_{0} t\right) \leftrightarrow \frac{1}{2}\left[X\left(\omega-\omega_{0}\right)+X\left(\omega+\omega_{0}\right)\right]}_{\text {Shift up }}
$$



Interesting... This tells us how to move a signal's spectrum up to higher frequencies without changing the shape of the spectrum!!!

What is that good for??? Well... only high frequencies will radiate from an antenna and propagate as electromagnetic waves and then induce a signal in a receiving antenna....

## Application of Modulation Property to Radio Communication

FT theory tells us what we need to do to make a simple radio system... then electronics can be built to perform the operations that the FT theory calls for:


Choose $f_{0}>10 \mathrm{kHz}$ to enable efficient radiation (with $\omega_{0}=2 \pi f_{0}$ )
AM Radio: around $1 \mathrm{MHz} \quad$ FM Radio: around 100 MHz
Cell Phones: around 900 MHz , around 1.8 GHz , around 1.9 GHz etc.

The next several slides show how these ideas are used to make a receiver:



By the Real-Sinusoid Modulation Property... the De-Modulator shifts up \& down:



## So... what have we seen in this example:

Using the Modulation property of the FT we saw...

1. Key Operation at Transmitter is up-shifting the message spectrum:
a) FT Modulation Property tells the theory then we can build...
b) "modulator" = oscillator and a multiplier circuit
2. Key Operation at Transmitter is down-shifting the received spectrum
a) FT Modulation Property tells the theory then we can build...
b) "de-modulator" = oscillator and a multiplier circuit
c) But... the FT modulation property theory also shows that we need filters to get rid of "extra spectrum" stuff
i. So... one thing we still need to figure out is how to deal with these filters...
ii. Filters are a specific "system" and we still have a lot to learn about Systems...
iii. That is the subject of much of the rest of this course!!!

## 7. Convolution Property (The Most Important FT Property!!!)

The ramifications of this property are the subject of the entire Ch. 5 and continues into all the other chapters!!!

It is this property that makes us study the FT!!

Mathematically we state this property like this:

$$
x(t) * h(t) \quad \leftrightarrow \quad X(\omega) H(\omega)
$$

Another way of stating this is:

$$
\mathscr{F}\{x(t) * h(t)\}=X(\omega) H(\omega)
$$

Now... what does this mean and why is it so important??!!
Recall that convolution is used to described what comes out of an LTI system:


Now we can take the FT of the input and the output to see how we can view the system behavior "in the frequency domain":


> System's $H(\omega)$ changes the shape of the input's $X(\omega)$ via multiplication to create output's $Y(\omega)$

It is easier to think about and analyze the operation of a system using this "frequency domain" view because visualizing multiplication is easier than visualizing convolution

## Let’s revisit our "Room Acoustics" example:

$$
y(t)=x(t) * h_{\text {room }}(t)
$$

Recall:


$$
|Y(\omega)|=|X(\omega)| \underbrace{1+\alpha e^{-j \omega c}} \mid
$$

$H_{\text {room }}(\omega)$
$\quad$ Plot of $\left|H_{\text {room }}(\omega)\right|$



What we hear is not right!!!


## So, we fix it by putting in an "equalizer" (a system that fixes things)

Equalizer
(by convolution property, applied twice!)

| $Y(\omega)$ | $=H_{\text {room }}(\omega) X_{2}(\omega)$ |
| ---: | :--- |
|  | $=H_{\text {room }}(\omega) H_{\text {eq }}(\omega) X(\omega)$ |

$$
\text { Then: }|Y(\omega)|=|X(\omega)|\left|H_{e q}(\omega)\right|\left|1+\alpha e^{-j \omega c}\right|
$$



Equalizer's $\left|H_{e q}(\omega)\right|$ should peak at frequencies where the room's $\left|H_{\text {room }}(\omega)\right|$ dips and vice versa

Room


Equalizer


Room
\&
Equalizer


## 8. Multiplication of Signals

$$
x(t) y(t) \leftrightarrow \frac{1}{2 \pi} X(\omega) * Y(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\lambda) Y(\omega-\lambda) d \lambda
$$

This is the "dual" of the convolution property!!!

## "Convolution in the Time-Domain"

gives
"Multiplication in the Frequency-Domain"
"Multiplication in the Time-Domain"
gives
"Convolution in the Frequency-Domain"

## 9. Parseval's Theorem (Recall Parseval's Theorem for FS!)

$$
\int_{-\infty}^{\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(\omega)|^{2} d \omega
$$

Energy computed in time domain
Energy computed in frequency domain

$$
\begin{aligned}
& |x(t)|^{2} d t \\
= & \text { energy at time } t
\end{aligned}
$$

$|X(\omega)|^{2} \frac{d \omega}{2 \pi}$
$=$ energy at freq. $\omega$

## Generalized Parseval's Theorem:

$$
\int_{-\infty}^{\infty} x(t) \overline{y(t)} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) \overline{Y(\omega)} d \omega
$$



Both FT \& IFT are pretty much the "same machine": $\quad c \int_{-\infty}^{\infty} f(\lambda) e^{ \pm j \lambda \xi} d \lambda$
So if there is a "time-to-frequency" property we would expect a virtually similar "frequency-to-time" property

Illustration: Delay Property:

$$
x(t-c) \leftrightarrow X(\omega) e^{-j \omega c}
$$

Modulation Property:

$$
x(t) e^{j \omega_{0} t} \leftrightarrow X\left(\omega-\omega_{0}\right)
$$

Other Dual Properties: (Multiply by $t^{n}$ ) vs. (Diff. in time domain)
(Convolution) vs. (Mult. of signals)

Also, this duality structure gives FT pairs that show duality.
Suppose we have a FT table that a FT Pair A... we can get the dual Pair B using the general Duality Property:

1. Take the FT side of (known) Pair A and replace $\omega$ by $t$ and move it to the time-domain side of the table of the (unknown) Pair B.
2. Take the time-domain side of the (known) Pair A and replace $t$ by $-\omega$, multiply by $2 \pi$, and then move it to the FT side of the table of the (unknown) Pair B.

Here is an example... We found the FT pair for the pulse signal:


