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EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #15
• C-T Signals: Fourier Transform Properties
• Reading Assignment: Section 3.6 of Kamen and Heck
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Ch. 1 Intro
C-T Signal Model

Functions on Real Line

D-T Signal Model
Functions on Integers

System Properties
LTI

Causal
Etc

Ch. 2 Diff Eqs
C-T System Model

Differential Equations
D-T Signal Model

Difference Equations

Zero-State Response

Zero-Input Response
Characteristic Eq.

Ch. 2 Convolution

C-T System Model
Convolution Integral

D-T System Model
Convolution Sum

Ch. 3:  CT Fourier 
Signal Models

Fourier Series
Periodic Signals

Fourier Transform (CTFT)
Non-Periodic Signals

New System Model

New Signal 
Models

Ch. 5:  CT Fourier 
System Models

Frequency Response
Based on Fourier Transform

New System Model

Ch. 4:  DT Fourier 
Signal Models

DTFT
(for “Hand” Analysis)

DFT & FFT
(for Computer Analysis)

New Signal
Model

Powerful 
Analysis Tool

Ch. 6 & 8:  Laplace 
Models for CT

Signals & Systems

Transfer Function

New System Model

Ch. 7:  Z Trans.
Models for DT

Signals & Systems

Transfer Function

New System
Model

Ch. 5:  DT Fourier 
System Models

Freq. Response for DT
Based on DTFT

New System Model

Course Flow Diagram
The arrows here show conceptual flow between ideas.  Note the parallel structure between 

the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).
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Fourier Transform Properties

Note: There are a few of these we won’t cover….
see Table on Website or the inside front cover of the book for them.

As we have seen, finding the FT can be tedious (it can even be difficult)

But…there are certain properties that can often make things easier. 

Also, these properties can sometimes be the key to understanding how the FT can 
be used in a given application.

So… even though these results may at first seem like “just boring math” they are 
important tools that let signal processing engineers understand how to build 
things like cell phones, radars, mp3 processing, etc.

I prefer that you use the tables on the website… they are 
better than the book’s
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1. Linearity (Supremely Important) 

If &

then

)()( ωXtx ↔ )()( ωYty ↔

[ ] [ ])()()()( ωω bYaXtbytax +↔+

To see why: { } [ ] dtetbytaxtbytax tj∫
∞

∞−

−+=+ ω)()()()(F

dtetybdtetxa tjtj ∫∫
∞

∞−

−∞

∞−

− += ωω )()(
By standard 
Property of 

Integral of sum 
of functions

Use Defn
of FT

)(ωX= )(ωY=

By Defn
of FT

By Defn
of FT

{ } { } { })()()()( tybtxatbytax FFF +=+

Another way to write this property:

Gets used virtually all the time!!
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Example Application of “Linearity of FT”: Suppose we need to find the FT 
of the following signal…

)(tx

1
2

2− 2
t

1

Finding this using straight-forward application of the definition of FT is not 
difficult but it is tedious:

{ } dtedtedtetx tjtjtj ∫∫∫ −

−

−−

−

− ++=
2

1

1

1

1

2
2)( ωωωF

− 1

So… we look for short-cuts:  
• One way is to recognize that each of these integrals is basically the same
• Another way is to break x(t) down into a sum of signals on our table!!!
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)(tx

1
2

2− 2
t

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

π
ω

π
ωω sinc22sinc4)(X

From FT Table we have a known result for the FT of a pulse, so…

Break a complicated signal down into simple signals before finding FT:

)(4 tp
1

2− 2
t

)(2 tp
1

1− 1
t

Add 
to get

)()()( 24 ωωω PPX +=)()()( 24 tptptx +=Mathematically we write:
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2. Time Shift (Really Important!)

ωωω jceXctxXtx −↔−↔ )()(then)()(If

Shift of Time Signal ⇔ “Linear” Phase Shift of Frequency Components

Used often to understand practical
issues that arise in audio, 

communications, radar, etc.

Note: If c > 0 then x(t – c) is a delay of x(t)

)()( ωω ω XeX cj =−

So… what does this mean??

First… it does nothing to the magnitude of the FT: 

That means that a shift doesn’t change “how much” we need of each of 
the sinusoids we build with

ωω

ωω ωω

cX

eXeX jcjc

+∠=

∠+∠=∠ −−

)(

)(})({

This gets added 
to original phase

Line of slope –c

Second… it does change the phase of the FT: 

Phase shift increases linearly 
as the frequency increases
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Example Application of Time Shift Property: Room acoustics.  

Practical Questions: Why do some rooms sound bad?  Why can you fix this by 
using a “graphic equalizer” to “boost” some frequencies and “cut” others?

0>c
10 << α

Delayed signal

Attenuated signal

[ ]cjeXY ωαωω −+= 1)()( This is the FT of what you hear…
It gives an equation that shows how the 
reflection affects what you hear!!!!

{ } { } { }
cjeXX

ctxtxctxtxY

ωωαω

ααω

−+=

−+=−+=

)()(

)()()()()( FFF
Use linearity and time shift to get the FT at your ear:

So… You hear: )()()( ctxtxty −+= α instead of just x(t)

speaker
ear

)(tx

)( ctx −α
Reflecting Surface

Very simple case of a single reflection:
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cjeXY ωαωω −+= 1)()(

)(ωH≡

changes 
shape of

)(ωH
)(ωX

The big 
picture!

The room changes how much of each frequency you hear…

)sin()cos(11)( ωαωααω ω cjceH jc −+=+= −

Let’s look closer at |H(ω)| to see what it does… Using Euler’s formula 
gives Rectangular Form

)(sin)(cos)cos(21)(sin))cos(1( 2222222 ccccc ωαωαωαωαωα +++=++=

( ) ( )22 ImRe +=mag
Expand 1st squared term

2α=
Use Trig ID

)cos(2)1(|)(| 2 cH ωααω ++=
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)cos(2)1()()( 2 cXY ωααωω ++=

The big picture… revisited:

Effect of the room… what does it look like as 
a function of frequency??  The cosine term 
makes it wiggle up and down… and the value 
of c controls how fast it wiggles up and down

Speed of sound in air ≈ 340 m/s 

Typical difference in distance ≈ 0.167m
sec5.0

m/s340
m167.0 mc ==

What is a typical value for delay c???

Spacing = 2 kHz

“Dip-to-Dip”

“Peak-to-Peak”

Spacing = 1/c Hz c controls spacing between dips/peaks

α controls depth/height of dips/peaks

The next 3 slides explore these effects
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Longer delay causes closer spacing… so more dips/peaks over audio range!

Attenuation: α = 0.2      Delay: c = 0.5 ms  (Spacing = 1/0.5e-3 = 2 kHz)

FT magnitude at 
the speaker 
(a made-up 

spectrum… but 
kind of like audio)

|H(ω)|… the effect 
of the room

FT magnitude at 
your ear… room 
gives slight boosts 
and cuts at closely 
spaced locations
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Attenuation: α = 0.8      Delay: c = 0.5 ms  (Spacing = 1/0.5e-3 = 2 kHz)

FT magnitude at 
the speaker

|H(ω)|… the effect 
of the room

FT magnitude at 
your ear… room 
gives large boosts 
and cuts at closely 
spaced locations
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Attenuation: α = 0.2      Delay: c = 0.1 ms  (Spacing = 1/0.1e-3 = 10 kHz)

Shorter delay causes wider spacing… so fewer dips/peaks over audio range!

FT magnitude at 
the speaker

|H(ω)|… the effect 
of the room

FT magnitude at 
your ear… room 
gives small boosts 
and cuts at widely 
spaced locations
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Matlab Code to create 
the previous plots
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3. Time Scaling (Important)

Q: If                        , then                          for)()( ωXtx ↔ ???)( ↔atx 0≠a

⎟
⎠
⎞

⎜
⎝
⎛↔

a
X

a
atx ω1)(A:

If the time signal is 
Time Scaled by a

Then… The FT is 
Freq. Scaled by 1/a

An interesting “duality”!!!
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To explore this FT property…first, what does x(at) look like?

|a| > 1 makes it “wiggle” faster ⇒ need more high frequencies

|a| < 1 makes it “wiggle” slower ⇒ need less high frequencies

)2( tx

t

1  

3.5
|a| > 1 “squishes” horizontally

)(tx

t

1    2    3  4      5    6      7

Original 
Signal

Time-Scaled 
w/ a = 2

⎟
⎠
⎞

⎜
⎝
⎛ tx

2
1

t

1    2    3    4    5    6    7  8      9   10   11  12  13    14

|a| < 1 “stretches” horizontallyTime-Scaled 
w/ a = 1/2
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When |a| > 1  ⇒ |1/a| < 1 ⎟
⎠
⎞

⎜
⎝
⎛↔

a
X

a
atx ω1)(

Time Signal is Squished FT is Stretched Horizontally
and  Reduced Vertically

)(tx

)2( tx

t

t
⎟
⎠
⎞

⎜
⎝
⎛

22
1 ωX

.5A

ω
( )ωXA

ω

Original Signal & Its FT

Squished Signal & Its FT
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When |a| < 1  ⇒ |1/a| > 1 ⎟
⎠
⎞

⎜
⎝
⎛↔

a
X

a
atx ω1)(

)(tx

t

⎟
⎠
⎞

⎜
⎝
⎛ tx

2
1

t
( )ω22X2A

ω
( )ωXA

ω

Time Signal is Stretched
FT is Squished Horizontally
and    Increased Vertically

Original Signal & Its FT

Stretched Signal & Its FT

Rough Rule of Thumb we can extract from this property:

↑ Duration  ⇒  ↓ Bandwidth

↓ Duration  ⇒ ↑ Bandwidth

Very Short Signals tend to take up Wide Bandwidth
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4. Time Reversal (Special case of time scaling: a = –1)

)()( ω−↔− Xtx

∫
∞

∞−

−−=− dtetxX tj )()()( ωωNote: ∫
∞

∞−

+= dtetx tjω)(
double conjugate 

= “No Change”

∫
∞

∞−

+= dtetx tjω)(

)()( ωω Xdtetx tj == ∫
∞

∞−

−

)()( ωω XX =

)()( ωω XX −∠=∠

Recall: conjugation 
doesn’t change abs. 
value but negates the 
angle

= x(t) if x(t) is real

Conjugate changes to –j

So if x(t) is real, then we get the special case:

)()( ωXtx ↔−
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5. Multiply signal by tn

n

n
nn

d
Xdjtxt
ω

ω)()()( ↔ n = positive integer

Example Find X(ω) for this x(t)
)(tx

t1

-1
1-1

Notice that: )()( 2 ttptx =

This property is mostly useful for finding the FT of typical signals.

t
t1

-1 1-1

)(2 tp
t1

1-1
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⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛==

π
ω

ω
ω

ω
ω sinc2)()( 2 d

djP
d
djX

So… we can use this property as follows: 

⎥⎦
⎤

⎢⎣
⎡ −

= 2

)sin()cos(2
ω

ωωωj

From entry #8 in 
Table 3.2 with τ = 2.

From entry on FT 
Table with τ = 2.

Now… how do you get the 
derivative of the sinc???

Use the definition of sinc and then use the rule for the 
derivative of a quotient you learned in Calc I:

)(

)()()()(

)(
)(

2 xg
dx

xdgxf
dx

xdfxg

xg
xf

dx
d −

=⎥
⎦

⎤
⎢
⎣

⎡
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6. Modulation Property Super important!!! Essential for understanding 
practical issues that arise in 
communications, radar, etc.

There are two forms of the modulation property…
1. Complex Exponential Modulation … simpler mathematics, doesn’t  

directly describe real-world cases
2. Real Sinusoid Modulation… mathematics a bit more complicated, 

directly describes real-world cases

Euler’s formula connects the two… so you often can use the Complex 
Exponential form to analyze real-world cases
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Complex Exponential Modulation Property

)()( 0
0 ωωω −↔ Xetx tj

Multiply signal by a 
complex sinusoid

Shift the FT 
in frequency

( )tx

t

( )ωX
A

ω

( )o
tj Xetx o ωωω −=})({F

A

ω

oω
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Real Sinusoid Modulation

Based on Euler, Linearity property, & the Complex Exp. Modulation Property 

{ } [ ]

[ ]{ } [ ]{ }[ ]

[ ])()(
2
1

)()(
2
1

)()(
2
1)cos()(

00

00
0

oo

tjtj

tjtj

XX

etxetx

etxetxttx

ωωωω

ω

ωω

ωω

++−=

+=

⎭
⎬
⎫

⎩
⎨
⎧ +=

−

−

FF

FF
Linearity of FT

Euler’s Formula

Comp. Exp. Mod.

[ ])()(
2
1)cos()( 000 ωωωωω −++↔ XXttx

Shift Down Shift Up

The Result:

Related Result: [ ])()(
2

)sin()( 000 ωωωωω −−+↔ XXjttx

Exercise: ??)cos()( 00 ↔+ φω ttx
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)(ωX
ω

{ })cos()( 0ttx ωF

ω

0ω0ω−

[ ])()(
2
1)cos()( 000 ωωωωω ++−↔ XXttx

Shift up Shift down

Shift UpShift Down

Interesting… This tells us how to move a signal’s spectrum up to higher 
frequencies without changing the shape of the spectrum!!!   

What is that good for???   Well… only high frequencies will radiate from an 
antenna and propagate as electromagnetic waves and then induce a signal in a 
receiving antenna…. 

Visualizing the Result
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Application of Modulation Property to Radio Communication

FT theory tells us what we need to do to make a simple radio system… then
electronics can be built to perform the operations that the FT theory calls for:

{ })cos()( 0ttx ωF

ω0ω0ω−

amp multiply

oscillator

amp

Sound and 
microphone

antenna

)(tx

)cos( 0tω

Transmitter

Modulator

)(ωX
ω

FT of Message Signal

Choose f0 > 10 kHz to enable efficient radiation  (with ω0 = 2πf0 )

AM Radio: around 1 MHz    FM Radio: around 100 MHz   

Cell Phones: around 900 MHz, around 1.8 GHz, around 1.9 GHz etc.
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Amp & 
Filtermultiply

oscillator

Amp & 
Filter

SpeakerReceiver

)cos( 0tω

ω0ω0ω−

Signals from Other
Transmitters

Signals from Other
Transmitters

Signals from Other
Transmitters

Signals from Other
Transmitters

De-Modulator

The next several slides show how these ideas are used to make a receiver:

ω0ω0ω−

The “Filter” removes the Other signals
(We’ll learn about filters later)
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Amp & 
Filtermultiply

oscillator

SpeakerReceiver

)cos( 0tω
ω

0ω0ω−

De-Modulator

ω

0ω0ω− 02ω02ω−

ω

0ω0ω− 02ω02ω−

By the Real-Sinusoid Modulation Property… the De-Modulator shifts up & down:

Shifted Up

Shifted Down

ω

0ω0ω− 02ω02ω−

Add… gives double
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Amp & 
Filtermultiply

oscillator

Amp & 
Filter

SpeakerReceiver

)cos( 0tω

De-Modulator

ω

0ω0ω− 02ω02ω−

Extra Stuff we don’t want

ω

0ω0ω− 02ω02ω−

The “Filter” removes the Extra StuffThe “Filter” removes the Extra Stuff

Speaker is driven by desired message signal!!!
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1. Key Operation at Transmitter is up-shifting the message spectrum: 

a) FT Modulation Property tells the theory then we can build…

b) “modulator” = oscillator and a multiplier circuit

2. Key Operation at Transmitter is down-shifting the received spectrum

a) FT Modulation Property tells the theory then we can build…

b) “de-modulator” = oscillator and a multiplier circuit

c) But… the FT modulation property theory also shows that we need 
filters to get rid of “extra spectrum” stuff

i. So… one thing we still need to figure out is how to deal with 
these filters…

ii. Filters are a specific “system” and we still have a lot to learn 
about Systems…

iii. That is the subject of much of the rest of this course!!!

So… what have we seen in this example:

Using the Modulation property of the FT  we saw…
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7. Convolution Property (The Most Important FT Property!!!)

The ramifications of this property are the subject of the 
entire Ch. 5 and continues into all the other chapters!!!

It is this property that makes us study the FT!!

)()()()( ωω HXthtx ↔∗

Mathematically we state this property like this:

{ } )()()()( ωω HXthtx =∗F

Another way of stating this is:
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h(t)
)(tx )()()( thtxty ∗=

System’s H(ω) changes the 
shape of the input’s X(ω) 
via multiplication to create 
output’s Y(ω) 

Now… what does this mean and why is it so important??!!

Recall that convolution is used to described what comes out of an LTI system:

Now we can take the FT of the input and the output to see how we can 
view the system behavior “in the frequency domain”:

)(ωX )()()( ωωω HXY =

h(t)
)(tx )()()( thtxty ∗=

FT FT
Use the Conv. Property!!

It is easier to think about and analyze the operation of a system 
using this “frequency domain” view because visualizing 
multiplication is easier than visualizing convolution
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speaker
ear

Let’s revisit our “Room Acoustics” example:

amp
)(tx

)(*)()( thtxty room=

cjeXY ωαωω −+= 1)()(
Recall:

Hroom(ω)

Plot of |Hroom(ω)|

What we hear 
is not right!!!
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So, we fix it by putting in an “equalizer” (a system that fixes things)

amp)(theq

)(tx

Equalizer

)()()(2 ωωω XHX eq=
(by convolution property)

cj
eq eHXY ωαωωω −+= 1)()()(Then:

Recall: Peaks and dips

)(*)()(2 thtxtx eq=

[ ] )(*)(*)(

)(*)()( 2

ththtx

thtxty

roomeq

room

=

=

(by convolution property, 
applied twice!)

)()()(

)()()( 2

ωωω

ωωω

XHH

XHY

eqroom

room

=

=

Want this whole thing to be = 1  so )()( ωω XY =
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Equalizer’s |Heq(ω)| should peak at frequencies 
where the room’s |Hroom(ω)| dips and vice versa

Room 
&

Equalizer

Room

Equalizer
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8. Multiplication of Signals

∫
∞

∞−
−=∗↔ λλωλ

π
ωω

π
dYXYXtytx )()(

2
1)()(

2
1)()(

This is the “dual” of the convolution property!!!

“Convolution in the 
Time-Domain”

gives “Multiplication in the 
Frequency-Domain”

“Multiplication in 
the Time-Domain”

gives “Convolution in the 
Frequency-Domain”



37/39

9. Parseval’s Theorem (Recall Parseval’s Theorem for FS!)

∫ ∫
∞

∞−

∞

∞−
= ωω

π
dXdttx 22 )(

2
1)(

Energy computed in time domain Energy computed in frequency domain

Generalized Parseval’s Theorem:

ωωω
π

dYXdttytx )()(
2
1)()( ∫∫

∞

∞−

∞

∞−
=

= energy at time t

dttx 2)(
= energy at freq. ω

π
ωω

2
)( 2 dX
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10. Duality:

)(tx )(ωX

∫
∞

∞−

−= dtetxX tjωω )()(

∫
∞

∞−
= ωω

π
ω deXtx tj)(

2
1)(

Both FT & IFT are pretty much the “same machine”: λλ λξ defc j∫
∞

∞−

±)(

So if there is a “time-to-frequency” property we would expect a 
virtually similar “frequency-to-time” property

)()( 0
0 ωωω −↔ Xetx tj

Modulation Property:

Other Dual Properties: (Multiply by tn) vs. (Diff. in time domain)

(Convolution)    vs. (Mult. of signals) 

cjeXctx ωω −↔− )()(Delay Property:Illustration:
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Pair B

)(tpτ ⎟
⎠
⎞

⎜
⎝
⎛

π
ωττ
2

sinc

Here is an example… We found the FT pair for the pulse signal:

Pair A

Also, this duality structure gives FT pairs that show duality.  

Suppose we have a FT table that a FT Pair A… we can get the dual 
Pair B using the general Duality Property:

⎟
⎠
⎞

⎜
⎝
⎛

π
ττ
2

sinc t

Step 1

)(2 ωπ τp

Step 2
Here we have used the 
fact that pτ(-ω) = pτ(ω)

1. Take the FT side of (known) Pair A and replace ω by t and move it 
to the time-domain side of the table of the (unknown) Pair B.

2. Take the time-domain side of the (known) Pair A and replace t by 
–ω, multiply by 2π, and then move it to the FT side of the table of 
the (unknown) Pair B.
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