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Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between
the pink blocks (C-T Freqg. Analysis) and the blue blocks (D-T Freq. Analysis).
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Fourier Transform Properties

Note: There are a few of these we won’t cover....
see Table on Website or the inside front cover of the book for them.

| prefer that you use the tables on the website... they are
better than the book’s

As we have seen, finding the FT can be tedious (it can even be difficult)
But...there are certain properties that can often make things easier.

Also, these properties can sometimes be the key to understanding how the FT can
be used in a given application.

So... even though these results may at first seem like “just boring math” they are
Important tools that let signal processing engineers understand how to build
things like cell phones, radars, mp3 processing, etc.
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1. Linearity (Supremely Important)

Gets used virtually all the time!!

If xX(t) o X(w) & Y{)eY(w)

then [ax(t) + b)’(t)] g [aX (@) +DbY (a))]

Another way to write this property:

Fiax(t) + by(t)} = ag{x(t) |+ bd{y(t)

Use Defn
To see why: g{ax(t) 4 by(t)} = foo [ax(t) + by(t)]e—icotdt { of FT }

p = aj x(t)e" J”tdt+b_[ y(t)e “"tdt

By standard

Integral of sum

Property of = X (60) =Y (w)

k of functions y

By Defn
of FT
4139




Example Application of “Linearity of FT”: Suppose we need to find the FT
of the following signal...

24 X(t)

Finding this using straight-forward application of the definition of FT is not
difficult but it is tedious:

FX(t)}= j__zle—j‘“tdt +2 j_lle‘j‘”tdt +| el

So... we look for short-cuts:
» One way is to recognize that each of these integrals is basically the same
» Another way is to break x(t) down into a sum of signals on our table!!!
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Break a complicated signal down into simple signals before finding FT:

-~ N
10,(t)
1
< :t 2“ X(t)
- 2 v 2 Add 1
1p,(t) to get : t
1 -2 2
A t
< 111 >
N >y

Mathematically we write: X(t) = p,(t)+ p,(1) s X(0)=P,(®)+P,(»)

From FT Table we have a known result for the FT of a pulse, so...

X(w) = 4sinc(2—wj + Zsinc(ﬁj

T T
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2. Time Shift (Really Important!) /Used often to understand practical
issues that arise in audio,
communications, radar, etc.
If x(t) <> X(®) then x(t-c)< X(w)e
Note: If ¢ > 0 then x(t — c) is a delay of x(t)

So... what does this mean??
First... it does nothing to the magnitude of the FT: ‘X (a))e‘j“’c‘ = \X (a))\

That means that a shift doesn’t change “how much” we need of each of
the sinusoids we build with

Second... it does change the phase of the FT: Z{X(@w)e *“}= £X (w)+ L&

= ZX(w) +Cw
_ () —
_Line of slope —CV This gets added
Phase shift increases linearly to original phase

as the frequency increases

Shift of Time Signal <«  “Linear” Phase Shift of Frequency Components
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Example Application of Time Shift Property: Room acoustics.

Practical Questions: Why do some rooms sound bad? Why can you fix this by

using a “graphic equalizer” to “boost” some frequencies and “cut” others?

Very simple case of a single reflection:

speaker

Reflecting Surface
P

o

x(t3

ear

O<axl

So... You hear:

Use linearity and time shift to get the FT at your ear:
Y () = F{x(t) + ax(t —c) } = F{x(t) }+ ad {x(t —c)}

Y (0) = X (o)1 + e ]

y(t) = X(t) + ax(t —c) instead of just x(t)

C > 0| Delayed signal

Attenuated signal

= X (@) + aX (w)e 1

This is the FT of what you hear...
It gives an equation that shows how the

reflection affects what you hear!!!! 8/39



T.he blgl Y (@) =|X ()| + ™' H(@)| changes
picture! - - shape of | X (@)

e T

\
‘ The room changes how much of each frequencm

Let’s look closer at |H(w)| to see what it does... Using Euler’s formula
gives Rectangular Form

H ()| = ‘1+ oe™’| =L+ acos(cw) — jasin(co)

= \J(L+ & CoS(ex))? + & Sin? (axc) = 1+ 2ac0S(ax) + a® COS? (k) + a’ Sin® (ec)

2
=
\znag _ JRef +(my |
Expand 15t squared term ’ Use Trig ID

) | H (@) = /(L+ ) + 2 cos(ax)
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The big picture... revisited:

Y () = |X (@) A+ &?) + 2 cos(ax)

e R -~
gl 0L ‘T | Effect of the room... what does it look like as
WA AW AW AW A WA AW AW AN a function of frequency?? The cosine term
AN . FiE S S S S makes it wiggle up and down... and the value
b of ¢ controls how fast it wiggles up and down

Spacing = 1/c Hz |+ | ¢ controls spacing between dips/peaks

“Dip-to-Dip” a controls depth/height of dips/peaks

“Peak-to-Peak”

‘ The next 3 slides explore these effects

What is a typical value for delay ¢???

Speed of sound in air = 340 m/s o 0.167m

Typical difference in distance ~ 0.167m - 340m/s
=>» Spacing = 2 kHz

0.5msec
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1/0.5¢-3 = 2 kHz)

Delay: ¢ =0.5ms (Spacing
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so more dips/peaks over audio range!

Longer delay causes closer spacing...




1/0.5¢-3 = 2 kHz)

Delay: ¢ =0.5ms (Spacing
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Stronger reflection causes bigger boosts/cuts!!




1/0.1e-3 = 10 kHz)

Delay: ¢ =0.1 ms (Spacing

=0.2

Attenuation: o
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so fewer dips/peaks over audio range!

Shorter delay causes wider spacing...




function room delav(atten,delay)

=0:100:20000: % Freg range: (0 Hz to 20 kHz
w=2%pi*f; Yo convert to rad/sec

H=abs{1 + atten®exp(-)*w*delay)); % Compute Room Effect

Yo Make up a fictitious audio spectrum
N=50000%w /({25 pi*2000+w)). " 2;

%o Now do plots

subplot{3,1.1) % splits fizure into 3 subplots, pick 1" one
plot( 1000,X) % note [converted into k Hz
xlabel('T{kHz)")

viabel("Original Audio Spectrum')

axis(|0 200 2]) % set axis ranges as desired

erid % put grid lines on

subplot(3,1,2) % splits figure into 3 subplots, pick 2™ one
plot( 1000,H)

xlabel("f (kHz)")

viabel('Room Effect’)

axis(|0 20 0 2])

erid

subplot(3,1.3) % splits ficure into 3 subplots, pick 3" one
plot{ /1000, H.%*X)

xlabel("f (kHz)'")

viabel("Changed Audio Spectrum’)

axis(|0 20 0 2])

erid

Matlab Code to create
the previous plots
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3. Time Scaling (Important)
Q: If X(t) <> X(®) ,then Xx(at) «>??? fora =0

A: [x(at) & 1 X (gj
a \a
4 X

[\

If th'e time signal is Then... The FT is
Time Scaled by a Freq. Scaled by 1/a

\— _/
Y

An interesting “duality”!!!
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To explore this FT property...first, what does x(at) look like?

x(t)
Original
Signal o |
5 6/]7
X(2t a1 3 Ar
Time-Scaled (21) |a| > 1 “squishes” horizontally
w/a=2 t
1t "
Time-Scaled | " 2 la] < 1 “stretches” horizontally
Wla:l/z | | | | | | | | | | | | | t
1 2 3 4 5 6 78 9 10 1112 13 |14

|la| > 1 makes it “wiggle” faster = need more high frequencies

|la| < 1 makes it “wiggle” slower = need less high frequencies
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(5

Whenla|>1 = |1/a]<1 X(at) & —
LFT IS Stretched Horizontally

and Reduced Vertically

Time Signal is Squished J

Original Signal & Its FT

I »

A

A
N

Squished Signal & Its FT

X(2t)
y1y(@
5A | 2 X(ZJ
t‘ ¥a{

|

A
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When Jaj <1 = |1/a|> 1 X(at) > ﬁ x(ﬁj
a a

\LFT IS Squished Horizontally

and Increased Vertically

X(t) Original Signal & Its FT
A t X(o)
t _/

Time Signal is Stretched J

A

<&
<«

| =

N
(o

: N\ ©
.-/‘X(

A

n
»

tj Stretched Signal & Its FT 2A 2X (20)
0,
Rough Rule of Thumb we can extract from this property:
T Duration = J Bandwidth

J Duration = T Bandwidth

Very Short Signals tend to take up Wide Bandwidth 18/39



4. Time Reversal (Special case of time scaling: a =-1)

X(—t) & X(—w)

. double conjugate

Note: X (-a)=[" x(t)e’"dt = x(t)e"“dt = “No Change”

« — —— <+ ———— Conjugate changes to —j
- J: x(t)e “*dt 1 : :

L: X(t) 1f x(t) is real

Recall: conjugation

_ [ —jet gt _
B LO x()e dt = X (w) doesn’t change abs.
value but negates the
. . _ angle
So if x(t) is real, then we get the special case:
X (@) =|X (@)

X(-t) < X(w) / ZX (@) = —2X (o)

19/39



5. Multiply signal by t"

d"X (o)
do"

t"x(t) < (j)" n = positive integer

This property is mostly useful for finding the FT of typical signals.

2 X(T
Example Find X(w) for this x(t) L1 %

Notice that: X(t) = tp, (t) <

20/39



So... we can use this property as follows:

From entry on FT
Table with T = 2.

)

@ @ T

X (w) = jdipz(w)z jdi(ZSinc(QD

@ CoS(w) —sIin(w)

= J2|: >
0,
ow... how do you get tf

N
[derivative of the sinc???

/Use the definition of sinc and then use the rule for the\
derivative of a quotient you learned in Calc I:

df (x) dg(x)
X

dx| g(x) |~ 0% (x)

d{f(x)} g(x) dx - f(x) d

S /

|
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Essential for understanding
practical issues that arise in
communications, radar, etc.

6. Modulation Property [Super important!!!]

There are two forms of the modulation property...
1. Complex Exponential Modulation ... simpler mathematics, doesn’t
directly describe real-world cases
2. Real Sinusoid Modulation... mathematics a bit more complicated,
directly describes real-world cases

Euler’s formula connects the two... so you often can use the Complex
Exponential form to analyze real-world cases
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Complex Exponential Modulation Property

x(t)e!™ < X (- aw,)

Multiply signal by a Shift the FT
complex sinusoid In frequency

{x(t)e'*}= X (0v-w,)

1A

Q

0]
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Real Sinusoid Modulation

Based on Euler, Linearity property, & the Complex Exp. Modulation Property

%Euler’s Formula ’
%ﬂty of FT ’

= %[g}ﬂx(t)ej”"t ]}+ g ﬂX(t)e_j”°t ]}]
. /Qomp. Exp. Mod. ’

= E[X (0—w,)+ X(w+ a)o)]

F{X(t) cos(wyt) = 5)‘{% [x(t)e ™ + x(t)e I ]}

The Result: | x(t)cos(aw,t) <> %[X (0+ @) + X (00— )]

Shift Down  Shift Up

Related Result: | x(t)sin(at) <> %[X (0+ w,) — X (- a)o)]

Exercise: X(t)cos(a,t + ¢,) <> ??
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Visualizing the Result ) = %[x (@—@p) + X (0+ @,)]

-

Shiftup  Shift down

X ()
/\ .

"
.
“,
-
.
*

Shift Down ¢~ ", Shift Up
" g{x(t)cos(eyt)} ¥

N | N Y

| .
— Wy @

P
<

P
<

Interesting... This tells us how to move a signal’s spectrum up to higher
frequencies without changing the shape of the spectrum!!!

What is that good for??? Well... only high frequencies will radiate from an
antenna and propagate as electromagnetic waves and then induce a signal in a

receiving antenna....
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Application of Modulation Property to Radio Communication

FT theory tells us what we need to do to make a simple radio system... then
electronics can be built to perform the operations that the FT theory calls for:

Sqund and Transmitter SR %&
microphone Modulator
> ~-Mogulator ‘
X(t) ¢ P
.>: amp > multlply = amp
: cos(a)ot)
: |oscillator

/FT of Message Signal

/ /t\x () 4 /\ Fix(t) TS(%D} /\ )
)

»
< I » -~ | I | =

Choose f, > 10 kHz to enable efficient radiation (with @, = 27f,)

AM Radio: around 1 MHz FM Radio: around 100 MHz

Cell Phones: around 900 MHz, around 1.8 GHz, around 1.9 GHz etc.
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The next several slides show how these ideas are used to make a receiver:

%>Y, REceVeT” _De:Modulator Speaker
Arr_lp & = multiply b A”.‘p & iy
_~~ | Filter | Filter
Signals from Other : COS aiot)
Transmitters _
: |oscillator| :
/ \ / R e i FSignaIs from Other
v I Transmitters

The “Filter” removes the Other signals
(We’ll learn about filters later)
_/\ | I\
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Receiver
N\ De-Modulator

-----------------
** '0

W AMp &

= multiply ilter

fcos(,t

:| oscillator |

-------------------

Speaker

T

the De-Modulator shifts up & down:

By the Real-Sinusoid Modulation Property...

Shifted Up
. , N . /@
— 2w, — , iy 0, 20,
Shlfted Down
VAN : VAN : : s
\ — 2(00 — a)o et ] a)o 26()0 //
A\ Add... gives double /\
< /}\ { | { /{\ 03
- 20, -, @, 20,

ot




Receiver Speaker

Y .Re:Modylator
Amp & : multiply - Amp & ::Q

y

Filter :NFilter
1Cos(ait)

Extra Stuff we don’ twantJ OSCIIIator |

-------------------

/\/ /I\ \ |

— 2w, -, @, 2a)O )

\ 4

| The “Filter” removes the Extra Stuff J

/A\/\

— 2w, ~ o, /\ o, 20, )

\

\ Speaker is driven by desired message signal!!! ]
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So... what have we seen in this example:

Using the Modulation property of the FT we saw...

1. Key Operation at Transmitter is up-shifting the message spectrum:
a) FT Modulation Property tells the theory then we can build...
b) “modulator” = oscillator and a multiplier circuit

2. Key Operation at Transmitter is down-shifting the received spectrum
a) FT Modulation Property tells the theory then we can build...
b) *“de-modulator” = oscillator and a multiplier circuit

c) But... the FT modulation property theory also shows that we need
filters to get rid of “extra spectrum’ stuff

I. So... one thing we still need to figure out is how to deal with
these filters...

1. Filters are a specific “system” and we still have a lot to learn
about Systems...

li. That is the subject of much of the rest of this course!!!
30/39



/. Convolution Property (The Most Important FT Property!!l)

The ramifications of this property are the subject of the
entire Ch. 5 and continues into all the other chapters!!!

It is this property that makes us study the FT!!

Mathematically we state this property like this:

x()*h(t) < X(w)H (o)

Another way of stating this is:

Fx() *h(t)} = X (w)H ()
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Now... what does this mean and why is it so important??!!

Recall that convolution is used to described what comes out of an LTI system:

X(1) YO = x(0)*h(t)
—{ @) :

Now we can take the FT of the input and the output to see how we can
view the system behavior “in the frequency domain”:

X(t) y(t) = {(t) *h(t)

— h(t)
@ Use the Conv. Property!! ]
System’s H(w) changes the

L5

X (o) Y () = X(w)H(w) w——| shape of the input’s X(®)
via multiplication to create
output’s Y(w)

It is easier to think about and analyze the operation of a system
using this “frequency domain’ view because visualizing
multiplication is easier than visualizing convolution
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Let’s revisit our “Room Acoustics” example:

speaker

ear

P d

amp

Recall: r \

¥ (@)=

> Q@ V() = () *h, 0 (1)

||||||
——————————————————————————————————————————————————————

I 1 I 1 1
I 1 1 1 I 1 1
(=] S S ENUN O ey — AR U SNV U
1 1 1 1 1
1 1 1 1 1 1 T

Original Audio Spectrum

Attbruatlori 0.2:

Room Effect

0 2 4 G § 10 12 14 16 18 20

i8]

—
o

What we hear
IS not right!!!

Hign(©) S S S A N O A
N N S S S 22 L e
| Plotot o § Pt s

-y

o
o

Changed Audio Spectrum

L]

| |
t I I r I i I I
0 2 4 5] 8 10 12 14 16 18 20
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So, we fix it by putting in an “equalizer” (a system that fixes things)

Equalizer

P

amp

Z X, (1) = X(1) *h,q (1)
t

Xz(a)) = Heq (G))X (C())

(by convolution property)

}
X(t) N
X0 //E@

y(t) = X2 (t) * hroom (t)
= [X() * g (O] oo (1)

1

Y (@) = Hypon (@) X, (@)

= Hipon (@) H ey (0) X ()

Then||Y ()] = X ()[H, (@)1 + a2

H_J

Y

Want this whole thing to be =1 so ‘Y (a))‘ = ‘X (a))‘

(by convolution property,
applied twice!)

Recall: Pejlks and dips
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Equalizer’s |H.,(o)| should peak at frequencies
where the room’s |H,,,(®)| dips and vice versa

2 T T T T
Room
Equalizer
0 | | | | | i | | |
0 2 4 6 8 10 12 14 16 18 20
2 :
= |
Room 5'1.5 —r'“* """"""""" -
T 1 :
& g
Equallzer 2@5 I R """"""""" )
0 I I I I I I I

! | | .
0 2 4 6 8 10 12 14 16 18 20
Frequency f (kHz)
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8. Multiplication of Signals

X()Y(1) < — X (@) Y (o) =ij°° X ()Y (w—2)dA
27 27T 9=

This is the “dual” of the convolution property!!!

“Convolution in the
Time-Domain”

gives

“Multiplication in the
Frequency-Domain”

“Multiplication In
the Time-Domain”

gives

“Convolution in the
Frequency-Domain”
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9. Parseval’s Theorem (Recall Parseval’s Theorem for FS!)
o0 1 o0

[ [x@[dt="=]" X (e) de
—00 271- —00

| - - 4 “— _—

Energy computed in time domain Energy computed in frequency domain
2 do
X(t)"dt X @) 22
: T
= EElEp st = energy at freq. o

Generalized Parseval’s Theorem:

[ x(®y(dt = % [* X (@Y (@)o

37/39



10. Duality: X (@) = j°° x(t)e 1 dt

/\

x(t) X (o)
\_/
X(t) = i jfo X (w)e“de

Both FT & IFT are pretty much the “same machine”: Cj f(1)e**dA

So if there is a “time-to-frequency” property we would expect a
virtually similar “frequency-to-time” property

[llustration: Delay Property:

Modulation Property:

Other Dual Properties:. (Multiply by t") vs. (Diff. in time domain)

(Convolution) vs. (Mult. of signals)
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Also, this duality structure gives FT pairs that show duality.

Suppose we have a FT table that a FT Pair A... we can get the dual
Pair B using the general Duality Property:

1. Take the FT side of (known) Pair A and replace o by t and move it
to the time-domain side of the table of the (unknown) Pair B.

2. Take the time-domain side of the (known) Pair A and replace t by
—m, multiply by 2w, and then move it to the FT side of the table of
the (unknown) Pair B.

Here is an example... We found the FT pair for the pulse signal:

: T
Pair A P, (t) [&=—|zsinc (gj
\ Here we have used the
Step }( /\ \SAtep 2 fact that p (-w) = p (®)

(4

Pair B zsinc (;—tj —27p, (a))J
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