
1/9

EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #16
• C-T Signals: Generalized Fourier Transform
• Reading Assignment: Section 3.7 of Kamen and Heck
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Course Flow Diagram
The arrows here show conceptual flow between ideas.  Note the parallel structure between 

the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).
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Generalized FT
This section allows us to apply FT to an even broader class of signals that 
includes the periodic signals and some other signals. 

The trick is to allow the delta function to be a part of a valid FT

But first we start “backwards”… with the delta function in the time domain.

Q: What is the FT of δ(t)?

A: First… think it through!   δ(t) is “the narrowest pulse”

And… a narrow pulse has a broad FT…

So… the narrowest pulse should have in some sense the broadest FT

Now… work the math:
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Now we can use the duality property to get another FT Pair:

δ(t) ↔ 1

1 ↔ 2πδ(ω)

“A DC signal” has FT concentrated at 0 Hz    DC = 0 Hz

ω

)(2)( ωπδω =Xπ2
x(t) = 1

t
. . .. . .

↔

So we now know:
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Now we can get another pair by using this last result and the real 
modulation property:

F{cos(ω0t)}

ω
-ω0 ω0

Note: This says you only need 
the components at +ω0 and -ω0
(i.e., exp{jω0t} and exp{-jω0t}) 

to build cos(ω0t)

1 ↔ 2πδ(ω)
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Can do similar thing for sine:
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Similarly… By the complex mod. property:
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Note: This says you need only exp{jω0t} to build exp{jω0t}!!!  Duh!!!
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i.e. the FT subsumes the FS!FT of periodic signal:
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If x(t) is periodic then we can write the FS of it as:

Note that we have now used the FT to analyze cosine and sine… which are 
PERIODIC signals!!!  Before we used the Fourier Series to analyze periodic
signals… Hmmm… it seems possible to use the FT instead of the FS!!

Now we can take the FT of both sides of this: { }
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FT of a Periodic Signal

Note: the FT is a bunch of delta functions 
with “weights” given by the FS coefficients!
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So the FT of a periodic signal is zero except at multiples of the 
fundamental frequency ω0, where you get impulses. 

We call these spikes “Spectral Lines”

See the book for FT of unit step, which contains a delta function
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