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EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #17
• C-T Systems: Frequency-Domain Analysis of Systems
• Reading Assignment: Section 5.1 of Kamen and Heck
• We’re jumping over Ch. 4 for now… we’ll come back later
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Ch. 5  Frequency-Domain Analysis of Systems
Our main interest in this chapter is:

How do we use the FT to analyze LTI systems?     

We’ll focus on the zero-state response here…

(The zero-input response can be found using the characteristic equation 
method or the more complete methods we’ll study later)

We’ll look first at CT systems using three steps:

5.1: Find out how sinusoids go through a C-T LTI

5.2: Because a periodic signal is a sum of sinusoids we use linearity to 
extend section 5.1 results to periodic signals. 

5.2: Non-periodic signals also can be viewed as a sum (really an integral) 
of sinusoids so we can extend the result again!

Later we’ll essentially do the same things for D-T systems.

In between we’ll look at “Ideal C-T Filters” and “Sampling” to convert C-T 
signals into D-T signals
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5.1  Response to a sinusoidal input:

In the notes for Section 3.1 (when we motivated WHY we were studying FS) we 
saw that it is easy to state how a complex sinusoid goes through a C-T LTI system :
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Same frequency sinusoid comes out… the system just 
changes the input sinusoid’s amplitude and phase

An LTI acts to change a complex sinusoid’s amplitude and phase
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h(t)
)cos()( 0 θω += tAtx ))(cos()()( ooo HtHAty ωθωω ∠++=

We also saw how a real sinusoid goes through a C-T LTI System

The only thing an LTI system does to a real sinusoid is change its 
amplitude and its phase!!!!

So… The big result is:

h(t) = impulse response H(ω) = frequency responseFT

h(t)
H(ω)
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H(ω) is called the “frequency response” of the system

Of course, you already knew that from circuits!!



6/10

Example: Connecting these general ideas to sinusoidal analysis of circuits.

h(t)
H(ω)

)cos( 0 θω +tA ?)( =ty

To go from the circuit view to the system view… we need H(ω)

When you did sinusoidal analysis in Circuits you did this!!!
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1. Convert capacitor into impedance:
Cj

Zc ω
ω 1)( = Small impedance at high ω

Large impedance at low ω

)cos()( θω += tAtx
+

−
)(ty

Sinusoidal Analysis of Circuit gives the System’s Frequency Response H(ω)

xAe j =θ2. Write input as phasor:
Phasor captures amplitude and 

phase of cosine… the only 
things the system can change!!

3.  Now analyze the circuit as if it were a DC circuit with a complex voltage 
in (the phasor) and complex resistors (the impedances):

R
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Now find the output 
phasor as a function of 

the input phasor… Here 
this is easiest using 

voltage divider! 
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Voltage Divider:  

4. Convert the “phasor solution” into the “sinusoidal solution”: 

Remember that a phasor is a complex number that holds: 

• sinusoid’s amplitude in its magnitude 
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• sinusoid’s phase in its angles
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To see how different frequencies are 
affected by the RC circuit we plot 
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Input has equal amounts at the 2 
frequencies…

Output has almost all of the low 
frequency component but much 
reduced high frequency component!
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So what have we seen:
• We can find the frequency response function H(ω) by doing a simple 

sinusoidal analysis of the circuit
• The frequency response function tells how a circuit changes the input 

sinusoid’s amplitude and phase
• The amount of change in each of these is different for different input 

frequencies… and a plot of H(ω) magnitude and phase shows this 
dependence

• RLC circuits can be used to allow certain frequency components to pass 
mostly unchanged while others are drastically reduced in amplitude
– We can “filter out” undesired frequency components
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