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o C-T Systems: Frequency-Domain Analysis of Systems
« Reading Assignment: Section 5.1 of Kamen and Heck
« \We’re jumping over Ch. 4 for now... we’ll come back later
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Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between
the pink blocks (C-T Freqg. Analysis) and the blue blocks (D-T Freq. Analysis).
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Ch. 5 Frequency-Domain Analysis of Systems

Our main interest in this chapter is:

How do we use the FT to analyze LTI systems?
We’ll focus on the zero-state response here...

(The zero-input response can be found using the characteristic equation
method or the more complete methods we’ll study later)

We’ll look first at CT systems using three steps:
5.1: Find out how sinusoids go through a C-T LTI

5.2: Because a periodic signal is a sum of sinusoids we use linearity to
extend section 5.1 results to periodic signals.

5.2: Non-periodic signals also can be viewed as a sum (really an integral)
of sinusoids so we can extend the result again!

Later we’ll essentially do the same things for D-T systems.

In between we’ll look at “Ideal C-T Filters” and “Sampling” to convert C-T
signals into D-T signals
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5.1 Response to a sinusoidal input:

In the notes for Section 3.1 (when we motivated WHY we were studying FS) we
saw that it is easy to state how a complex sinusoid goes through a C-T LTI system :

X(t) = Aglt+?)

A 4

h(t)

y(t) = Agi@t=0) [ h(r)e i de

— = H(w,)

We now know that this is the —
FT of the system’s impulse
response, evaluated at o = @,

) oo ()6
y(t) _ |H (a)o)|Aej(a)ot+(9+4H (p))

Same frequency sinusoid comes out... the system just
changes the input sinusoid’s amplitude and phase

[ An LTI acts to change a complex sinusoid’s amplitude and phase

4/10



We also saw how a real sinusoid goes through a C-T LTI System

X(t) = Acos(a,t + 6)

y

y(t) = AH (@,)|cos(a,t + 0 + ZH (@,))
h(t) >

[The only thing an LTI system does to a real sinusoid is change its ]

amplitude and its phase!!!!

Of course, you already knew that from circuits!!

So... The big result is:

h(t) = impulse response

FT

» H(w) = frequency response

Acos(aw,t +6)

h(t)
H(w)

‘H (a)o)‘ACOS(a)Ot +60+ /H(w,))

H(w) is called the “frequency response” of the system
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Example: Connecting these general ideas to sinusoidal analysis of circuits.

R

_|_
x(t) = Acos(at + ) £ ) ;(t)
I L ] *

To go from the circuit view to the system view... we need H(w)

Acos(w,t + ) h(t) y(t) ="

H(w)

When you did sinusoidal analysis in Circuits you did this!!!
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Sinusoidal Analysis of Circuit gives the System’s Frequency Response H(w)

R

_I_
X(t) = Acos(at+ 0
(1) = Acos(at +0) W b
J I
1. Convert capacitor into impedance: Z, () =~ - [ small impedance at high «
J Large impedance at low @

2. Write input as phasor: Agl? — § «—

Phasor captures amplitude and
phase of cosine... the only
things the system can change!!

3. Now analyze the circuit as if it were a DC circuit with a complex voltage
In (the phasor) and complex resistors (the impedances):

Ae!?

I
|

1/jwC

O g

Now find the output\
phasor as a function of
the input phasor... Here
this is easiest using
voltage divider!

_
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Voltage Divider: y = Z () X = _1 X
R+Z (o) 1+ JaRC

. J

“H (o)

Output Phasor: ¥ = H (@)X = |H (@)|e*"“'x
= |H (@)’ Ae’

_ QH (a))‘A)ej(é’JréH(w))

4. Convert the “phasor solution” into the “sinusoidal solution”:

Remember that a phasor is a complex number that holds:
e sinusoid’s amplitude in its magnitude

e sinusoid’s phase in its angles

( A \ I_H ( A N\ 4 A \
y = (H ()| A @) = y(t) =|H (w)|Acos(at + 0 + ZH ())
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To see how different frequencies are
affected by the RC circuit we plot

H ()| & £H (w)

‘ H (a))‘
1 T
1
H@) =
(al T 05F 1+ JaR
0316 f
|
. ; . | i
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Figure 5.2 (a) Magnitude and (b) phase functions of the RC circuit in Example 5.2

for the case 1/RC = 1000,

H (100) = 0.995¢ /%%
H (3000) = 0.316e 1*#*

(b)

Input has equal amounts at the 2
frequencies...

X(t) = cos(100t) + cos(3000t)

2
I i |.I
1 | ittt . e HEHTTE,
= Il
] 'l Il | I I |
Nl | I
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g o :
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y(t) =0.995c0s(100t —0.097)
+0.316cos(3000t —1.249)

Output has almost all of the low
frequency component but much
reduced high frequency component!
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So what have we seen:

We can find the frequency response function H(w) by doing a simple
sinusoidal analysis of the circuit

The frequency response function tells how a circuit changes the input
sinusoid’s amplitude and phase

The amount of change in each of these is different for different input
frequencies... and a plot of H(w) magnitude and phase shows this
dependence

RLC circuits can be used to allow certain frequency components to pass
mostly unchanged while others are drastically reduced in amplitude

— We can “filter out” undesired frequency components
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