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EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #18
• C-T Systems: Frequency-Domain Analysis of Systems
• Reading Assignment: Section 5.2 of Kamen and Heck
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Course Flow Diagram
The arrows here show conceptual flow between ideas.  Note the parallel structure between 

the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).
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5.2 Response to Periodic Inputs
h(t)

H(ω)
periodic x(t) y(t) = ?

Since x(t) is periodic, write it as FS: ∑
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(complex: magnitude & phase)
Sum these 

to get 
output

So, the input is a sum of terms

Linear System: So… Output = Sum of Individual Responses

But each individual response is to a complex sinusoid input ⇒ EASY!

Sum these 
to get input
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Indicates 
“for x(t)”
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General Insights from this Analysis

1. periodic in, periodic out

2. The system’s frequency response H(ω) works to modify the input FS 
coefficients to create the output FS coefficients:

x
k

y
k ckHc )( 0ω=
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Example (Ex. 5.4 with Some Injected Reality)

Problem: suppose you have a circuit board that has a digital clock circuit on it.  It makes 
the rectangular pulse train shown below:

. . . . . .

t

x(t)1

-4.5    -3.5     -2.5    -1.5     -0.5     0.5     1.5     2.5      3.5      4.5

(Of course most digital clock circuits would run much faster)

Assume: The circuit “driving” the cable has an infinitesimally small output 
impedance (that is good!):

x(t)Thevenin of driver:

y(t)x(t) Pair of wires can be modeled as an RC circuit:

x(t) y(t)

Suppose you need to connect this clock signal to a circuit on another circuit 
board using a twisted pair of wires:

Q: What effect does the cable have on 
the clock signal at the 2nd board???
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Assume: The circuit being “driven” by the cable has infinite input impedance (that is 
good!)    i.e. No loading of the RC circuit

So…

x(t) y(t) (goes to driven circuit having infinite 
input impedance)

Goal: Perform an analysis to enable you to recommend an acceptable value of 
cable RC time constant      (Analysis Drives Design!)

Step 2: Find cable’s frequency response as a function of RC:

(See Ex. in section 5.1) 
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Indicates 
“for x(t)”

Step 1: Analytically find FS of input and compute truncated FS sum:

From Ex. 3.4 we get: ∑
−=

≈
N

Nk

tjkx
k

oectx ω)(

Then plot vs. time t
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Step 3 (optional) (But it really helps you see what is going on!)

Look at frequency domain plots of Input and System (for various RC values)

“stem” plot of FS
coefficients’
Magnitude

x
kc

“continuous” plot of
Magnitude of system’s
Frequency Resp. |H(ω)|

Step 4 (optional) (This also really helps you see what is going on) 

Compute output FS coefficients:

Look at the result → “stem” plot of y
kc

x
k

y
k ckHc )( 0ω=

See plots on next 3 pages for three RC time constant values: 

RC = 0.01 s

RC = 0.1 s

RC = 1 s

Note: Short RC time
constant passes high

frequencies better than 
long RC time constant

∑
−=

≈
N

Nk

tjky
k ecty 0)( ω Plot vs. time t

Step 5: Compute truncated FS sum to see output signal
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• We used a simple model for the cable to make it easy to analyze
– But… the method would be the same even if we had a more 

detailed model for the cable
• The input clock signal has nice sharp transitions due to its significant 

high frequency components
• Cables that significantly suppressed the input’s high frequency 

components provided a low-quality clock signal to the 2nd board
• We made assumptions about the driver circuit and the driven circuit

– The driver was assumed to have zero output resistance
• If that were not true, its output impedance gets added to the resistor 

and that would further degrade the performance (in fact the driver’s 
output impedance may be more than the cable resistance in which 
case it would be the dominant factor

– The driven circuit was assumed to have infinite input impedance
• If that were not true we would have to combine it in parallel with the 

capacitor’s impedance… this would further degrade the performance
• Typically the RC value of a cable increases with length

– So performance would decrease with length of cable

Insight from Example:
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function [x,t]=example_5_4(RC)

k=1:4:200;
K=[k;k+1;k+2;k+3];
C_k=1./(K*pi);   % fill matrix with this form… keep first row
C_k(2,:)=zeros(size(k));   % replace 2nd row w/ zeros
C_k(3,:)=-1*C_k(3,:);     % replace 3rd row w/ negatives
C_k(4,:)=zeros(size(k));   % replace 4th row w/ zeros
c_x_k=C_k(:);   % turn into col. vector by going down matrix columns

t=-3:(6/800):3;   % create time vector with approp. spacing
k=(1:max(max(K)));  % create FS term index
[T,K]=meshgrid(t,k);  % create time matrix and index matrix

wo=pi;
EXP_pos=exp(j*T.*K*wo);  % Each row is a sinusoid term
EXP_neg=exp(-j*T.*K*wo);
%% Compute the FS summation to get approx. input time signal
x=0.5+sum(c_x_k(:,ones(1,length(t))).*EXP_pos)…

+sum(conj(c_x_k(:,ones(1,length(t)))).*EXP_neg);
% The above cmnd adds up the rows of EXP weigthed by the c_x_k

subplot(2,3,1)
plot(t,x)
xlabel('time (sec)')
ylabel('Input Signal x(t)')

subplot(2,3,4)
w_k=k*wo;   % create vector of FS frequencies
% In the next line we have to attach c_0=0.5 and its freq
stem([0 w_k]/(2*pi),[0.5 abs(c_x_k).'])   % plot vs freq in Hz
xlabel('k f_o  (Hz)')
ylabel('|c^x_k|')
axis([-0.5 15 0 0.6])

subplot(2,3,5)
w=0:0.1:max(w_k);   % create finely-spaced frequency
H=1./(1+j*w*RC);   % compute Freq Resp @ these Freqs
plot(w/(2*pi),abs(H))  % plot vs. freq in Hz
xlabel('f  (Hz)')
ylabel('|H(f)|')
axis([-0.5 15 0 1.1])

subplot(2,3,6)
H_k=1./(1+j*w_k*RC);    % compute Freq Resp at FS freqs
H_0=1./(1+j*0*RC);
c_y_k=c_x_k.*(H_k.');  % compute output FS coeffs
stem([0 w_k]/(2*pi),[0.5*H_0 abs(c_y_k).'])
xlabel('k f_o  (Hz)')
ylabel('|c^y_k|')
axis([-0.5 15 0 0.6])

subplot(2,3,3)
%% FS summation to get approx. output time signal
y=0.5*H_0+sum(c_y_k(:,ones(1,length(t))).*EXP_pos)…

+sum(conj(c_y_k(:,ones(1,length(t)))).*EXP_neg);
plot(t,y)
xlabel('time (sec)')
ylabel('Output Signal y(t)')

4 types of indices:
1,5,9,…
2,6,10,..
3,7,11,…
4,8,12,…
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Matlab Code for Example’s Plots
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