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EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #19
• C-T Systems: Frequency-Domain Analysis of Systems
• Reading Assignment: Section 5.2 of Kamen and Heck
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Course Flow Diagram
The arrows here show conceptual flow between ideas.  Note the parallel structure between 

the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).
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5.2  Response to Aperiodic Signals

-Impulse Response h(t) is a 
time-domain description of the 
system

-Frequency Response H(ω) is a 
frequency-domain description
of the system

Recall that:

Because h(t) and H(ω) form a FT pair, one completely defines the other.

h(t) and convolution completely describe the zero-state response of an LTI to an 
input – i.e. h(t) completely describes the system.

Thus: H(ω) must also completely describes the LTI system HOW????



4/17

Conv. Property 
from chapter 4!!

Step 3: Exploit System Linearity (again – Step 2 was the first time) 

-Total output is a sum of output components [ ] ωωω
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“Proof”

Step 1: Think of the input as a sum of complex sinusoids

-Each component 
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Step 2: We know how each component passes through an LTI

-This is the idea of frequency response

- is the out. component that is due to the input component
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1. Time-Domain: y(t) = h(t)*f(t)

2. Freq-Domain: Y(ω) = H(ω)F(ω)

Given input f(t) and impulse response h(t), to analyze the system we could either:

1. Compute the convolution  h(t)*f(t)
or…

2. Do the following:
(a) Compute H(ω)  &  compute F(ω)
(b) Compute the product Y(ω) = H(ω)F(ω)
(c) Compute the IFT: y(t) = F−1{ H(ω)F(ω)} 

Method #2 (Freq-Domain Method) may not be necessarily easier, 
but it usually provides a lot more insight than Method #1!!!!

Input-Output Relationship Characterized Two Ways

From the Freq-Domain view we can see how H(ω) boosts or 
cuts the amounts of the various frequency components
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Relationships between various modeling methods

Recall: we are trying to find ways to model… CT Linear Time-Invariant 
Systems in Zero-State

Since these are all equivalent…we can use any or all of them to solve a 
given problem!!
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Example

Scenario: You need to send a pulse signal into a computer’s interface circuit to 
initiate an event (e.g. “next PTT slide”)

Q: What kind of signal should you use?

Q: Will this work?

It depends on the interface circuitry already in the computer!

Suppose the interface circuitry consists of an “AC Coupled” transistor amplifier 
as shown below
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“AC coupled”

Input 
signal

Output 
signal

We’ll ignore the effects of 
this capacitor in our analysis

“Equivalent Circuit Model”

)(tx )(ty

Model this as an equivalent 
Input Impedance…
simplify here: Req

Now we need to find the 
System Model viewpoint!

eq
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“Equivalent System Model”

H(ω)

)(tx )(ty

)(ωY)(ωX

What is H(ω)??

)(tx )(ty

Use Sinusoidal Analysis to find it… we did that once already for this circuit…

Use Phasors, Impedances, and Voltage Divider:
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Actually… one 
LIKE it!
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Now…what does the input pulse look like in the frequency domain?

From FT table:
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So find IFT of  this…

YUCK!!! HARD!!!
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Well…do we need to “go back to the time domain”?  NO!

Just look at Y(ω) and see what it tells

The plots below show that very little energy gets through the system

Think Parseval’s theorem

-1000 -500 0 500 1000
0

0.02

0.04

0.06

0.08

0.1

f  (Hz)

|X
1(f)

|

-1000 -500 0 500 1000
0

0.2

0.4

0.6

0.8

1

f  (Hz)

|H
(f)

|

-1000 -500 0 500 1000
0

0.02

0.04

0.06

0.08

0.1

f  (Hz)

|Y
1(f)

|

0 1 1 0 1

Input FT
System’s Freq. 

Resp. Output FT

So this pulse signal is not usable here because very little of its energy gets 
through the interface circuitry!!!
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The problem lies in that |H(ω)| is small where |X(ω)| is big

(and vice versa)

⇒ Pick an X(ω) that does not do that!!

0ω0ω−

)(2 ωX

See actual plots on next page

ω

sinc shifted upsinc shifted up

Use a pulse that is “Modulated Up” to where |H(ω)| allows it to pass
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“A modulated pulse”



13/17

-1000 -500 0 500 1000
0

0.02

0.04

0.06

0.08

0.1

f  (Hz)

|X
1(f)

|

-1000 -500 0 500 1000
0

0.2

0.4

0.6

0.8

1

f  (Hz)
|H

(f)
|

-1000 -500 0 500 1000
0

0.02

0.04

0.06

0.08

0.1

f  (Hz)

|Y
1(f)

|

-1000 -500 0 500 1000
0

0.02

0.04

0.06

0.08

0.1

f  (Hz)

|X
2(f)

|

-1000 -500 0 500 1000
0

0.2

0.4

0.6

0.8

1

f  (Hz)

|H
(f)

|

-1000 -500 0 500 1000
0

0.02

0.04

0.06

0.08

0.1

f  (Hz)

|Y
2(f)

|

Original Input FT Original Output FT
System’s Freq. 

Resp.

Alternate Input FT Alt. Output FTSame Freq. Resp.

Output FT is not changed much from Input FT: this is a viable pulse!!!
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Example:  Attenuation of high frequency Disturbance
|X

(ω
)|

∠
X(
ω

) (
de

gr
ee

s)

Desired Part of Signal

Time (sec)

Time-Domain View of Input

Undesired High 
Freq Wiggle

This scenario could occur 
in an audio setting (a 
high-pitched interference).  
We’ve also seen it occur 
in the example of a radio 
receiver (the de-modulator 
created the desired low-
freq signal but it also 
created undesired high-
freq signals
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• We can use the FT to “see” at what frequencies there are undesired 
signals

• Then we can specify a desired system frequency response H(ω) that 
will reduce (or “attenuate”) the undesired signal while keeping the 
desired signal
– Note that it would be virtually impossible to try to directly specify a 

desired system impulse response that will do this
• Once we have specified the desired H(ω) we could try to find a circuit 

(i.e., a physical system) that will implement it     (either exactly or 
approximately)
– This is the “design” or “system synthesis” problem
– We haven’t yet learned how to do this!!  Tools we’ll learn later will help!
– However, if we have H(ω) specified as a mathematical function we could 

possibly compute the inverse FT to get the impulse response h(t)… then 
we could implement this “digitally” like we did earlier to simulate an RC 
circuit using D-T convolution.

Comments on This Example
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