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Note Set #20
• C-T Systems: Ideal Filters - Frequency-Domain Analysis
• Reading Assignment: Section 5.3 of Kamen and Heck
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Course Flow Diagram
The arrows here show conceptual flow between ideas.  Note the parallel structure between 

the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).



5.3 Ideal Filters
Often we have a scenario where we have a “good” signal, xg(t), corrupted by a 
“bad” signal, xb(t), and we want to use an LTI system to remove (or filter out) the 
bad signal, leaving only the good signal. 

How do we do this?  What H(ω) do we want?

Note: You cannot design the circuit until you know 
which H(ω) the circuit must implement
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Such a filter is called a “low-pass filter”



Case #2: is a high-frequency signal
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This is called a “high-pass filter”
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“Bandstop Filter” or “Notch Filter”
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Bandpass Filter

Case #4:

Note that in Cases #3 and #4 the filter can’t remove the bad signal without 
causing some damage to the desired signal…

…this is not specific to bandpass and bandstop filters…

…it can also happen with low-pass and high-pass filters.  

In practice this is almost always the case!!



What about the phase of the filter’s H(ω)?

Well…we could tolerate a small delay in the output so…

From the time-shift property of the FT then we need:
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Thus we should treat the exponential term here as H(ω), so we have: 

Line of slope –td
“Linear Phase”



So… for an ideal low-pass filter (LPF) we have:
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i.e. phase is undefined 
for frequencies outside 

the ideal passband

Summary of Ideal Filters

1. Magnitude Response:

a. Constant in Passband

b. Zero in Stopband

2. Phase Response

a. Linear in Passband (negative slope = delay)

b. Undefined in Stopband



Example of the effect of a nonlinear phase but an ideal magnitude

Here is the scenario:  Imagine we have a a signal x(t) given by
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So, at the filter’s output we have four sinusoids at the same frequencies and 
amplitudes as at the input…BUT, they are not aligned in time in the same way 
they were at the input
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Point of this Example

A filter with an ideal magnitude 
response but non-ideal phase 
response can degrade a signal as 
much as a filter with a non-ideal 
magnitude response!!!
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