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EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #23
• D-T Signals: DTFT Details
• Reading Assignment: Section 4.1 of Kamen and Heck
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Causal
Etc

Ch. 2 Diff Eqs
C-T System Model

Differential Equations
D-T Signal Model

Difference Equations

Zero-State Response

Zero-Input Response
Characteristic Eq.

Ch. 2 Convolution

C-T System Model
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D-T System Model
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Ch. 3:  CT Fourier 
Signal Models

Fourier Series
Periodic Signals

Fourier Transform (CTFT)
Non-Periodic Signals
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Ch. 5:  CT Fourier 
System Models
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Based on Fourier Transform

New System Model

Ch. 4:  DT Fourier 
Signal Models

DTFT
(for “Hand” Analysis)

DFT & FFT
(for Computer Analysis)
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Model

Powerful 
Analysis Tool

Ch. 6 & 8:  Laplace 
Models for CT

Signals & Systems

Transfer Function

New System Model

Ch. 7:  Z Trans.
Models for DT

Signals & Systems

Transfer Function

New System
Model

Ch. 5:  DT Fourier 
System Models

Freq. Response for DT
Based on DTFT

New System Model

Course Flow Diagram
The arrows here show conceptual flow between ideas.  Note the parallel structure between 

the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).
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Sect 4.1 continued: The Details
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Compare to CTFT:

Define the DTFT:

Very similar structure… so we should expect similar properties!!!
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Example of Analytically Computing the DTFT
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Given this signal model, find the DTFT. 
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General Form for 
Geometric Sum:
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Characteristics of DTFT
1.Periodicity of X(Ω)

X(Ω) is a periodic function of Ω with period of 2π

)()2( Ω=+Ω⇒ XX π Recall pictures in notes of “DTFT Intro”:

Note: the CTFT does not
have this property

2. X(Ω) is complex valued (in general)

∑ Ω−=Ω
n

njenxX ][)( complex

Usually think of X(Ω) in polar form:
)()()( Ω∠Ω=Ω XjeXX

magnitude
phase Same

as 
CTFT

⇒|X(Ω)| is periodic with period 2π

∠X(Ω) is periodic with period 2π
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3. Symmetry

If x[n] is real-valued, then:

)()( Ω=Ω− XX

)()( Ω−∠=Ω−∠ XX

(even symmetry)

(odd symmetry)

Same as CTFT

Inverse DTFT

Q: Given X(Ω) can we find the corresponding x[n]?

A: Yes!!
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We can integrate instead over 
any interval of length 2π

…because the 
DTFT is periodic 
with period 2π
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Generalized DTFT

Periodic D-T signals have DTFT’s that contain delta functions
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Another way of writing this is:

Example:
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How do we derive the result?  Work backwards!
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Transform Pairs: Like for the CTFT, there is a table of common pairs (See Web)

Be familiar with them Compare and contrast them with the table
Of common CTFT’s

Table 3.2
Table 4.1

Careful here… the book’s 
table doesn’t have this 
subscript… see next slide.
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DTFT of a Rectangular Pulse (Ex. 4.3)
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Use “Geometric 
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see Eq. (4.5)
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Tables on my 

Website
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Properties of the DTFT (See table on my website)
Like for the CTFT, there are many properties for the DTFT.   Most are identical to 
those for the CTFT!!

But Note: “Summation Property” replaces Integration

There is no “Differentiation Property”

Compare and contrast these with the table of CTFT properties

Most important ones:

-Time shift

-Multiplication by sinusoid… Three “flavors”

-Convolution in the time domain

-Parseval’s Theorem
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Table 3.1
Table 4.2

This one has no equivalent on 
CTFT Properties Table…

See next example

It provides a way to use a CTFT table to find DTFT pairs…
here is an example

Use the Tables on 
my Web Site!!!



13/17

Example 4.7: Finding a DTFT pair from a CTFT pair 

π 2π-π-2π Ω

X(Ω)

Say we are given this DTFT and want to invert it…

The four steps for using “Relationship to Inverse CTFT” property are:

1. Truncate the DTFT X(Ω) to the -π to π range and set it to zero elsewhere
2. Then treat the resulting function as a function of ω… call this Γ(ω)

B-B

Book’s picture is 
not quite 

correct… the “B”
is in the wrong 

place

π 2π-π-2π ω

Γ(ω) = X(ω)p2π(ω)

B-B

Γ(ω) = X(ω)p2π(ω)
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4.  Get the x[n] by replacing t by n in γ(t) 

From CTFT table:
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3.  Find the inverse CTFT of Γ(ω) from a CTFT table, call it γ(t)
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Example of DTFT of sinusoid
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So… use the “mult. by sinusoid”
property
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Table

Another way of writing this:

Y(Ω)
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π 2π 3π 4π-π-2π-3π-4π
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[ ])()(
2
1)( 00 Ω−Ω+Ω+Ω=Ω⇒ YYX “mult. by 

sinusoid”
property says 
we shift up & 
down by Ω0[ ]
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Recall: )cos(1][ 0nnx Ω×= so we can use the “mult. by sinusoid” result

Using the second form for Y(Ω) gives:

Or…using the first form for Y(Ω) gives:
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To see this graphically:
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Red comes from  Up-shifted Y(Ω)
Blue comes from  Down-shifted Y(Ω)
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