EECE 301

 Signals \& Systems

 Signals \& Systems Prof. Mark Fowler

Note Set \#23

- D-T Signals: DTFT Details
- Reading Assignment: Section 4.1 of Kamen and Heck

Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).

Sect 4.1 continued: The Details

Define the DTFT:

In rad/sample
radians
Compare to CTFT: $X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-\mathrm{j} j \mathrm{t} t} d t$

Very similar structure... so we should expect similar properties!!!

Example of Analytically Computing the DTFT

Given this signal model, find the DTFT.
By definition: $X(\Omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n}=\sum_{n=0}^{q} a^{n} e^{-j \Omega n}=\sum_{n=0}^{q}\left(a e^{-j \Omega}\right)^{n}$

$$
X(\Omega)=\frac{1-\left(a e^{-j \Omega}\right)^{q+1}}{1-a e^{-j \Omega}}
$$

General Form for Geometric Sum:

$$
\sum_{n=q_{1}}^{q_{2}} r^{n}=\frac{r^{q_{1}}-r^{q_{2}+1}}{1-r}
$$

Characteristics of DTFT

1.Periodicity of $X(\Omega)$

$X(\Omega)$ is a periodic function of Ω with period of 2π

$$
\Rightarrow X(\Omega+2 \pi)=X(\Omega) \quad \text { Recall pictures in notes of "DTFT Intro": }
$$

$\Rightarrow|X(\Omega)|$ is periodic with period 2π

Note: the CTFT does not have this property
2. $X(\Omega)$ is complex valued (in general)

$$
X(\Omega)=\sum_{n} x[n] \underbrace{e^{-j \Omega n}}_{\pi} \text { complex }
$$

Usually think of $X(\Omega)$ in polar form:

$$
X(\Omega)=\underbrace{|X(\Omega)|}_{\text {magnitude }} e^{j \angle \underbrace{\angle X(\Omega)}_{\text {phase }}} \quad \begin{gathered}
\text { Same } \\
\text { as } \\
\text { CTFT }
\end{gathered}
$$

3. Symmetry

If $x[n]$ is real-valued, then:

$$
\begin{array}{ll}
|X(-\Omega)|=|X(\Omega)| & \text { (even symmetry) } \\
\angle X(-\Omega)=-\angle X(\Omega) & \text { (odd symmetry) }
\end{array}
$$

Same as CTFT

Inverse DTFT

Q: Given $X(\Omega)$ can we find the corresponding $x[n]$?
A: Yes!!

$$
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\Omega) e^{j n \Omega} d \Omega
$$

We can integrate instead over any interval of length 2π
...because the
DTFT is periodic with period 2π

Generalized DTFT

Periodic D-T signals have DTFT's that contain delta functions
Example: $\quad x[n]=1, \forall n \quad X \quad X(\Omega)=\left\{\begin{array}{l}2 \pi \delta(\Omega),-\pi<\Omega<\pi \\ \text { periodic, elsewhere }\end{array}\right.$
With a period of 2π

Another way of writing this is:

$$
X(\Omega)=2 \pi \sum_{k=-\infty}^{\infty} \delta(\Omega-k 2 \pi)
$$

How do we derive the result? Work backwards!

$$
\begin{aligned}
x[n] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\Omega) e^{j n \Omega} d \Omega \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} 2 \pi \delta(\Omega) e^{j n \Omega} d \Omega \\
& =e^{j n \cdot 0} \\
& =1
\end{aligned}
$$

Transform Pairs: Like for the CTFT, there is a table of common pairs (See Web)

Compare and contrast them with the table Of common CTFT's

Table 3.2 соMmon fourier transform pairs

Table 4.1 COMMON DTFT PAIRS

$$
\begin{aligned}
& \rightarrow 1, \text { all } n \leftrightarrow \sum_{k=-\infty}^{\infty} 2 \pi \delta(\Omega-2 \pi k) \\
& \rightarrow \operatorname{sgn}[n] \leftrightarrow \frac{2}{1-e^{-j \Omega}}, \quad \text { where } \operatorname{sgn}[n]= \begin{cases}1, & n=0.1,2 \ldots \\
-1, & n=-1 .-2, \ldots\end{cases} \\
& \Rightarrow u[n] \leftrightarrow \frac{1}{1 \rightarrow e^{-j \Omega}}+\sum_{k=-\infty}^{\infty} \pi \delta(\Omega-2 \pi k) \\
& \Rightarrow \delta[n-N] \leftrightarrow e^{-j N \Omega}, \quad N= \pm 1, \pm 2, \ldots \\
& a^{n} u[n] \leftrightarrow \frac{1}{1-a e^{-j \Omega}}, \quad|a|<1 \\
& e^{j \Omega_{0} n} \leftrightarrow \sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\Omega-\Omega_{0}-2 \pi k\right) \\
& p[n] \leftrightarrow \frac{\sin \left[\left(q+\frac{1}{2}\right) \Omega\right]}{\sin (\Omega / 2)} \\
& q^{B} \\
& \frac{B}{\pi} \operatorname{sinc}\left(\frac{B}{\pi} n\right) \leftrightarrow \sum_{k=-\infty}^{\infty} p_{2 B}(\Omega+2 \pi k) \\
& \cos \Omega_{0} n \leftrightarrow \sum_{k=-\infty}^{\infty} \pi\left[\delta\left(\Omega+\Omega_{0}-2 \pi k\right)+\delta\left(\Omega-\Omega_{0}-2 \pi k\right)\right] \\
& \sin \Omega_{0} n \leftrightarrow \sum_{k=-\infty}^{\infty} j \pi\left[\delta\left(\Omega+\Omega_{0}-2 \pi k\right)-\delta\left(\Omega-\Omega_{0}-2 \pi k\right)\right] \\
& \cos \left(\Omega_{0} n+\theta\right) \leftrightarrow \sum_{k=-\infty}^{\infty} \pi\left[e^{-j \theta} \delta\left(\Omega+\Omega_{0}-2 \pi k\right)+e^{j \theta} \delta\left(\Omega-\Omega_{0}-2 \pi k\right)\right] \\
&
\end{aligned}
$$

DTFT of a Rectangular Pulse (Ex. 4.3)

Define: D-T pulse as $p_{q}[n]= \begin{cases}1, & n=-q, \ldots,-1,0,1, \ldots, q\end{cases}$

So, by DTFT definition: $\quad P_{q}(\Omega)=\sum_{n=-q}^{q} e^{-j n \Omega}$
Use "Geometric
Sum" Result...
see Eq. (4.5)

$$
\begin{gathered}
P_{q}(\Omega)=\frac{e^{j q \Omega}-e^{-j(q+1) \Omega}}{1-e^{-j \Omega}}=\frac{\sin \{(q+1 / 2) \Omega\}}{\sin \{\Omega / 2\}} \\
\begin{array}{c}
\text { See book for } \\
\text { details }
\end{array}
\end{gathered}
$$

Properties of the DTFT (See table on my website)

Like for the CTFT, there are many properties for the DTFT. Most are identical to those for the CTFT!!

But Note: "Summation Property" replaces Integration
There is no "Differentiation Property"
Most important ones:
-Time shift
-Multiplication by sinusoid... Three "flavors"
-Convolution in the time domain
-Parseval's Theorem

Compare and contrast these with the table of CTFT properties

It provides a way to use a CTFT table to find DTFT pairs... here is an example

Example 4.7: Finding a DTFT pair from a CTFT pair

Say we are given this DTFT and want to invert it...
The four steps for using "Relationship to Inverse CTFT" property are:

1. Truncate the $\operatorname{DTFT} \mathrm{X}(\Omega)$ to the $-\pi$ to π range and set it to zero elsewhere
2. Then treat the resulting function as a function of $\omega .$. call this $\Gamma(\omega)$

$$
\Gamma(\omega)=X(\omega) p_{2 \pi}(\omega)
$$

3. Find the inverse CTFT of $\Gamma(\omega)$ from a CTFT table, call it $\gamma(t)$
From CTFT table:

$$
\gamma(t)=\frac{B}{\pi} \operatorname{sinc}\left(\frac{B}{\pi} t\right)
$$

4. Get the $x[n]$ by replacing t by n in $\gamma(t)$

$$
x[n]=\left.\gamma(t)\right|_{t=n}=\frac{B}{\pi} \operatorname{sinc}\left(\frac{B}{\pi} n\right)
$$

Example of DTFT of sinusoid

$$
x[n]=\cos \left(\Omega_{0} n\right) \quad \leftrightarrow \quad X(\Omega)=?
$$

Note that: $\quad x[n]=1 \times \cos \left(\Omega_{0} n\right)$

So... use the "mult. by sinusoid" property

$$
\Delta y[n]=1 \stackrel{\text { From DTFT }}{\substack{\text { Table }}} Y(\Omega)=2 \pi \sum_{k=-\infty}^{\infty} \delta(\Omega-2 \pi k)
$$

Another way of writing this: $Y(\Omega)=\left\{\begin{array}{l}2 \pi \delta(\Omega), \quad-\pi<\Omega<\pi \\ 2 \pi-\text { periodic elsewhere }\end{array}\right.$

Recall: $\quad x[n]=1 \times \cos \left(\Omega_{0} n\right) \quad$ so we can use the "mult. by sinusoid" result

$$
\Rightarrow X(\Omega)=\frac{1}{2}\left[Y\left(\Omega+\Omega_{0}\right)+Y\left(\Omega-\Omega_{0}\right)\right]
$$

Using the second form for $Y(\Omega)$ gives:

$$
X(\Omega)=\left\{\begin{array}{l}
\pi\left[\delta\left(\Omega+\Omega_{0}\right)+\delta\left(\Omega-\Omega_{0}\right)\right], \quad-\pi<\Omega<\pi \\
2 \pi \text {-periodic elsewhere }
\end{array}\right.
$$

"mult. by sinusoid" property says we shift up \& down by Ω_{0}

Or... using the first form for $Y(\Omega)$ gives:

$$
Y(\Omega)=\pi \sum_{k=-\infty}^{\infty}\left[\delta\left(\Omega+\Omega_{0}-2 \pi k\right)+\delta\left(\Omega-\Omega_{0}-2 \pi k\right)\right]
$$

To see this graphically:

$$
Y(\Omega)=\left\{\begin{array}{l}
2 \pi \delta(\Omega), \quad-\pi<\Omega<\pi \\
2 \pi-\text { periodic elsewhere }
\end{array}\right.
$$

$X(\Omega)= \begin{cases}\pi\left[\delta\left(\Omega+\Omega_{0}\right)+\delta\left(\Omega-\Omega_{0}\right)\right], & -\pi<\Omega<\pi \\ 2 \pi-\text { periodic elsewhere }\end{cases}$

