

State University of New York

EECE 301 Signals & Systems Prof. Mark Fowler

Note Set #23

- D-T Signals: DTFT Details
- Reading Assignment: Section 4.1 of Kamen and Heck

Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).

Sect 4.1 continued: The Details

Very similar structure... so we should expect similar properties!!!

Given this signal model, find the DTFT.

 $X(\Omega) = \frac{1 - (ae^{-j\Omega})^{q+1}}{1 - ae^{-j\Omega}}$

By definition:
$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} = \sum_{n=0}^{q} a^n e^{-j\Omega n} = \sum_{n=0}^{q} (ae^{-j\Omega})^n$$

General Form for Geometric Sum:

$$\sum_{n=q_1}^{q_2} r^n = \frac{r^{q_1} - r^{q_2 + 1}}{1 - r}$$

Characteristics of DTFT

<u>1.Periodicity of $X(\Omega)$ </u>

 $X(\Omega)$ is a periodic function of Ω with period of 2π

 $\Rightarrow X(\Omega + 2\pi) = X(\Omega)$

Recall pictures in notes of "DTFT Intro":

 $\Rightarrow |X(\Omega)| \text{ is periodic with period } 2\pi$ $\angle X(\Omega) \text{ is periodic with period } 2\pi$

Note: the CTFT does <u>not</u> have this property

2. $X(\Omega)$ is complex valued (in general)

$$X(\Omega) = \sum_{n} x[n] \underbrace{e^{-j\Omega n}}_{\bullet} \quad \text{complex}$$

Usually think of $X(\Omega)$ in polar form:

$$X(\Omega) = |X(\Omega)| e^{j \angle X(\Omega)}$$
 phase
magnitude CTFT

3. Symmetry

If x[n] is <u>real-valued</u>, then: $|X(-\Omega)| = |X(\Omega)|$ (even symmetry) $\angle X(-\Omega) = -\angle X(\Omega)$ (odd symmetry) Same as CTFT

Inverse DTFT

Q: Given $X(\Omega)$ can we find the corresponding x[n]?

A: Yes!!

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{jn\Omega} d\Omega$$

We can integrate instead over
any interval of length 2π
...because the
DTFT is periodic
with period 2π

Generalized DTFT

Periodic D-T signals have DTFT's that contain delta functions

Example:
$$x[n] = 1, \forall n \leftrightarrow X(\Omega) = \begin{cases} 2\pi\delta(\Omega), -\pi < \Omega < \pi \\ periodic, elsewhere \end{cases}$$

With a period of 2π

Another way of writing this is:

$$X(\Omega) = 2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - k2\pi)$$

How do we derive the result? Work backwards!

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{jn\Omega} d\Omega$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} 2\pi \delta(\Omega) e^{jn\Omega} d\Omega$$
Sifting property
$$= e^{jn \cdot 0}$$
$$= 1$$

Transform Pairs: Like for the CTFT, there is a table of common pairs (See Web)

Be familiar with them

Compare and contrast them with the table Of common CTFT's

DTFT of a Rectangular Pulse (Ex. 4.3)

Properties of the DTFT (See table on my website)

Like for the CTFT, there are many properties for the DTFT. <u>Most</u> are identical to those for the CTFT!!

But Note: "Summation Property" replaces Integration

There is no "Differentiation Property"

Most important ones:

-Time shift

-Multiplication by sinusoid... Three "flavors"

-Convolution in the time domain

-Parseval's Theorem

Compare and contrast these with the table of CTFT properties

Table 3.1 PROPERTIES OF THE FOURIER TRANSFORM

Table 4.2 PROPERTIES OF THE DTFT

Property		The second		
	Transform Pair/Property	Property	Transform Pair/Property	
Linearity Right or left shift in time	$ax(t) + bv(t) \leftrightarrow aX(\omega) + bV(\omega)$ $x(t - c) \leftrightarrow X(\omega)e^{-j\omega\epsilon}$	 Linearity 	$ax[n] + bv[n] \leftrightarrow aX(\Omega) + bV(\Omega)$	
Time scaling	$x(at) \leftrightarrow \frac{1}{a} X\left(\frac{\omega}{a}\right) a > 0$	Right or left shift in time	$x[n-q] \leftrightarrow X(\Omega)e^{- q\Omega }$, q any integer	
Time reversal	$x(-t) \leftrightarrow \overline{x}(-\omega) = \overline{X(-\omega)}$	Time reversal	$x[-n] \leftrightarrow X(-\Omega) = \overline{X(\Omega)}$	
Multiplication by a power of t	$t^n x(t) \leftrightarrow j^n \frac{d^n}{d\omega^n} X(\omega) n = 1, 2,$	Multiplication by n	$nx[n] \leftrightarrow j \frac{d}{d\Omega} X(\Omega)$	
Multiplication by a complex exponential	$x(t)e^{j\omega_0} \leftrightarrow X(\omega - \omega_0) \omega_0 \text{ real}$	Multiplication by a complex exponential	$x[n]e^{in\Omega_0} \leftrightarrow X(\Omega - \Omega_0), \Omega_0 \text{ real}$	
Multiplication by $\sin \omega_0 t$	$x(t) \sin \omega_0 t \leftrightarrow \frac{j}{2} [X(\omega + \omega_0) - X(\omega - \omega_0)]$	Multiplication by sin $\Omega_{\theta'}$	$x[n] \sin \Omega_0 n \leftrightarrow \frac{j}{2} [X(\Omega + \Omega_n) - X(\Omega - \Omega_n)]$	
Multiplication by $\cos \omega_0 t$	$x(t) \cos \omega_0 t \leftrightarrow \frac{1}{2} [X(\omega + \omega_0) + X(\omega - \omega_0)]$		$x[n] \cos \Omega_0 n \leftrightarrow \frac{1}{2} [X(\Omega + \Omega_0) + X(\Omega - \Omega_0)]$	
Differentiation in the time domain	$\frac{d^n}{dt^n} x(t) \leftrightarrow (j\omega)^n X(\omega)$ $n = 1, 2,$	Convolution in the time domain	$x[n] * v[n] \leftrightarrow X(\Omega)V(\Omega)$	
Integration	$\int_{-\infty}^{t} x(\lambda) d\lambda \leftrightarrow \frac{1}{j\omega} X(\omega) + \pi X(0) \delta(\omega)$	Summation	$\sum_{i=0}^{n} x[i] \leftrightarrow \frac{1}{1-e^{-i\Omega}} X(\Omega) + \sum_{i=0}^{n} \pi X(2\pi n) \delta(\Omega - 2\pi n)$	
Convolution in the time domain	$x(t) * v(t) \leftrightarrow X(\omega)V(\omega)$	Multiplication in the time domain	N=14	
Multiplication in the time domain	$x(t)v(t) \leftrightarrow \frac{1}{2\pi}X(\omega) * V(\omega)$	and a provident in the time domain	$x[n]v[n] \leftrightarrow \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega - \lambda)V(\lambda) d\lambda$	
Parseval's theorem	$\int_{-\infty}^{\infty} x(t)v(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{X(\omega)}V(\omega) d\omega$	Parseval's theorem	$\sum_{n=-\infty}^{\infty} x[n]v[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \overline{X(\Omega)} V(\Omega) d\Omega$	
Special case of Parseval's theorem	$\int_{-\infty}^{\infty} x^{2}(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^{2} d\omega$	Special case of Parseval's theorem	$\sum_{n=-\infty}^{\infty} x^2[n] = \frac{1}{2\pi} \int_{-\infty}^{\pi} X(\Omega) ^2 d\Omega$	
Duality	$J_{-x} = 2\pi J_{-x} = \chi(\omega)$ $\chi(t) \leftrightarrow 2\pi x(-\omega)$	Relationship to inverse CTFT	If $x[n] \leftrightarrow X(\Omega)$ and $\gamma(t) \leftrightarrow X(\omega)p_{2\pi}(\omega)$, then $x[n] = \gamma(t) _{t=u} = \gamma(n)$	
		\leq		
This one has no equivalent on Use the Tables on				
	· · · · · · · · · · · · · · · · · · ·			
	FT Properties Table.	•• m	y Web Site!!!	

See next example

It provides a way to use a CTFT table to find DTFT pairs... here is an example

Say we are given this DTFT and want to invert it...

The four steps for using "Relationship to Inverse CTFT" property are:

- 1. Truncate the DTFT $X(\Omega)$ to the $-\pi$ to π range and set it to zero elsewhere
- 2. Then treat the resulting function as a function of ω ... call this $\Gamma(\omega)$

$$\Gamma(\omega) = X(\omega)p_{2\pi}(\omega)$$

3. Find the inverse CTFT of $\Gamma(\omega)$ from a CTFT table, call it $\gamma(t)$

From CTFT table: $\gamma(t) = \frac{B}{\pi} \operatorname{sinc}\left(\frac{B}{\pi}t\right)$

4. Get the x[n] by replacing t by n in $\gamma(t)$

$$x[n] = \gamma(t)\Big|_{t=n} = \frac{B}{\pi}\operatorname{sinc}\left(\frac{B}{\pi}n\right)$$

Example of DTFT of sinusoid

$$x[n] = \cos(\Omega_0 n) \iff X(\Omega) = ?$$

Another way of writing this:

$$Y(\Omega) = \begin{cases} 2\pi\delta(\Omega), & -\pi < \Omega < \pi \\ 2\pi - \text{periodic elsewhere} \end{cases}$$

Recall: $x[n] = 1 \times \cos(\Omega_0 n)$ so we can use the "mult. by sinusoid" result

$$\Rightarrow X(\Omega) = \frac{1}{2} \left[Y(\Omega + \Omega_0) + Y(\Omega - \Omega_0) \right]$$

Using the second form for $Y(\Omega)$ gives:

$$X(\Omega) = \begin{cases} \pi \left[\delta(\Omega + \Omega_0) + \delta(\Omega - \Omega_0) \right], & -\pi < \Omega < \pi \\ 2\pi - periodic \ elsewhere \end{cases}$$

"mult. by sinusoid" property says we shift up & down by Ω_0

Or...using the first form for $Y(\Omega)$ gives:

$$Y(\Omega) = \pi \sum_{k=-\infty}^{\infty} \left[\delta(\Omega + \Omega_0 - 2\pi k) + \delta(\Omega - \Omega_0 - 2\pi k) \right]$$

