
1/22

EECE 301
Signals & Systems
Prof. Mark Fowler

Note Set #25
• D-T Signals: Relation between DFT, DTFT, & CTFT
• Reading Assignment: Sections 4.2.4 & 4.3 of Kamen and Heck

2/22

Ch. 1 Intro
C-T Signal Model

Functions on Real Line

D-T Signal Model
Functions on Integers

System Properties
LTI

Causal
Etc

Ch. 2 Diff Eqs
C-T System Model

Differential Equations
D-T Signal Model

Difference Equations

Zero-State Response

Zero-Input Response
Characteristic Eq.

Ch. 2 Convolution

C-T System Model
Convolution Integral

D-T System Model
Convolution Sum

Ch. 3: CT Fourier
Signal Models

Fourier Series
Periodic Signals

Fourier Transform (CTFT)
Non-Periodic Signals

New System Model

New Signal
Models

Ch. 5: CT Fourier
System Models

Frequency Response
Based on Fourier Transform

New System Model

Ch. 4: DT Fourier
Signal Models

DTFT
(for “Hand” Analysis)

DFT & FFT
(for Computer Analysis)

New Signal
Model

Powerful
Analysis Tool

Ch. 6 & 8: Laplace
Models for CT

Signals & Systems

Transfer Function

New System Model

Ch. 7: Z Trans.
Models for DT

Signals & Systems

Transfer Function

New System
Model

Ch. 5: DT Fourier
System Models

Freq. Response for DT
Based on DTFT

New System Model

Course Flow Diagram
The arrows here show conceptual flow between ideas. Note the parallel structure between

the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).

3/22

We can use the DFT to implement numerical FT processing
This enables us to numerically analyze a signal to find out what frequencies it
contains!!!

A CT signal “comes in” through a sensor
& electronics (e.g., a microphone & amp)

The ADC creates
samples (taken at
an appropriate Fs)

ADC

⇒
DFT

Processing
(via FFT)

X[0]
X[1]
X[2]

X[N-1]
⇓

Inside “Computer”

⇒

memory
array

)(tx][nx

“H/W” or
“S/W on processor”

x[0]
x[1]
x[2]

x[N-1]
⇓

memory
array

FFT algorithm
computes N
DFT values

DFT values in memory array (they can be
plotted or used to do something “neat”)

N samples are
“dumped” into
a memory array

4/22

If we are doing this DFT processing to see what the original CT signal x(t)
“looks” like in the frequency domain…

… we want the DFT values to be “representative” of the CTFT of x(t)

Likewise…

If we are doing this DFT processing to do some “neat” processing to extract
some information from x(t) or to modify it in some way…

… we want the DFT values to be “representative” of the CTFT of x(t)

So… we need to understand what the DFT values tell us about the
CTFT of x(t)…

We need to understand the relations between…

CTFT, DTFT, and DFT

5/22

We’ll mathematically explore the link between DTFT & DFT in two cases:

…0 0 x[0] x[1] x[2] ... X[N – 1] 0 0

N “non-zero” terms

(of course, we could have some
of the interior values = 0)

1. For x[n] of finite duration:

For this case… we’ll assume that the signal is zero outside the range
that we have captured.

So… we have all of the meaningful signal data.

This case hardly ever
happens… but it’s easy to

analyze and provides a
perspective for the 2nd case

2. For x[n] of infinite duration …or at least of duration longer than what
we can get into our “DFT Processor” inside our “computer”.

So… we don’t have all the meaningful signal data.

What effect does that have? How much data do we need for a given goal?

This is the practical case.

6/22

DFT & DTFT: Finite Duration Case
If x[n] = 0 for n < 0 and n ≥ N then the DTFT is:

∑∑
−

=

Ω−
∞

−∞=

Ω− ==Ω
1

0
][][)(

N

n

nj

n

nj enxenxX we can leave out
terms that are zero

Now… if we take these N samples and compute the DFT (using the FFT, perhaps)
we get:

∑
−

=

− −==
1

0

/2 1...,,2,1,0][][
N

n

Nknj NkenxkX π

Comparing these we see that for the finite-duration signal case: ()NkXkX π2][=

)(ΩX

1
k

Ω
π 2ππ/2-π/2-π

0 2 3 4 5 6 7

][kX
DTFT & DFT :

DFT points lie exactly
on the finite-duration

signal’s DTFT!!!

7/22

Summary of DFT & DTFT for a finite duration x[n]

][nx
DFT

DTFT)(ΩX

⎟
⎠
⎞

⎜
⎝
⎛=

N
kXkX π2][

Points of DFT are
“samples” of DTFT of x[n]

“Zero-Padding Trick”

After we collect our N samples, we tack on some additional zeros at the end to
trick the “DFT Processing” into thinking there are really more samples.

(Since these are zeros tacked on they don’t change the values in the DFT sums)

If we now have a total of NZ “samples” (including the tacked on zeros), then the
spacing between DFT points is 2π/NZ which is smaller than 2π/N

The number of samples N sets how closely spaced these “samples” are on the
DTFT… seems to be a limitation.

8/22

Ex. 4.11 DTFT & DFT of pulse

⎩
⎨
⎧ =

=
otherwise

qn
nx

,0
2...,2,1,0,1

][
⎪⎩

⎪
⎨
⎧ −−=

=
otherwise

qqn
npq

,0

,,1,0,1,,,1
][:Recall

……

][][qnpnx q −=Then…
Note: we’ll need the
delay property for

DTFT

]2/sin[
])5.0sin[()(][

Ω
Ω+

=Ω↔
qPnp qqFrom DTFT Table:

Since x[n] is a finite-duration signal then the DFT of the
N = 2q+1 non-zero samples is just samples of the DTFT: ⎟

⎠
⎞

⎜
⎝
⎛=

N
kXkX π2][

Ω−

Ω
Ω+

=Ω jqeqX
]2/sin[

])5.0sin[()(
From DTFT Property Table

(Delay Property):

Nkjqe
Nk

NkqkX /2

]/sin[
]/2)5.sin[(][π

π
π −+

=

9/22

Note that if we don’t zero pad, then all but the k = 0 DFT values are zero!!!

That doesn’t show what the DTFT looks like! So we need to use zero-padding.

Here are two numerically computed examples, both for the case of q = 5:

For the case of zero-
padding 11 zeros onto
the end of the signal…

the DFT points still
don’t really show what
the DTFT looks like!

For the case of zero-
padding 77 zeros onto
the end of the signal…
NOW the DFT points
really show what the

DTFT looks like!

DFTs were computed using matlab’s fft command… see code on next slide

10/22

Compute the DTFT
Equation derived for the
pulse. Using eps adds a
very small number to
avoid getting Ω = 0 and
then dividing by 0

omega=eps+(-1:0.0001:1)*pi;
q=5; % used to set pulse length to 11 points
X=sin((q+0.5)*omega)./sin(omega/2);
subplot(2,1,1)
plot(omega/pi,abs(X)); % plot magn of DTFT
xlabel('\Omega/\pi (Normalized rad/sample)')
ylabel('|X(\Omega)| and |X[k]|')
hold on
x=zeros(1,22); % Initially fill x with 22 zeros
x(1:(2*q+1))=1; % Then fill first 11 pts with ones
Xk=fftshift(fft(x)); % fft computes the DFT and fftshift re-orders points

% to between -pi and pi
omega_k=(-11:10)*2*pi/22; % compute DFT frequencies, except make them

% between -pi and pi
stem(omega_k/pi,abs(Xk)); % plot DFT vs. normalized frequencies
hold off
subplot(2,1,2)
plot(omega/pi,abs(X));
xlabel('\Omega/\pi (Normalized rad/sample)')
ylabel('|X(\Omega)| and |X[k]|')
hold on
x=zeros(1,88);
x(1:(2*q+1))=1;
Xk=fftshift(fft(x));
omega_k=(-44:43)*2*pi/88;
stem(omega_k/pi,abs(Xk));
hold off

Make the zero-padded signal
Compute the DFT

Compute the DFT point’s
frequency values and plot
the DFT

11/22

• DFT points lie on the DTFT curve… perfect view of the DTFT
– But… only if the DFT points are spaced closely enough

• Zero-Padding doesn’t change the shape of the DFT…
• It just gives a denser set of DFT points… all of which lie on the

true DTFT
– Zero-padding provides a better view of this “perfect” view of the DTFT

Important Points for Finite-Duration Signal Case

12/22

DFT & DTFT: Infinite Duration Case
As we said… in a computer we cannot deal with an infinite number of signal samples.

We can compute the DFT of the N collected samples:

1...,,1,0][][
1

0

/2 −== ∑
−

=

− NkenxkX
N

n

Nnkj
NN

π

Q: How does this DFT of the “truncated signal” relate to the “true” DTFT of
the full-duration x[n]? …which is what we really want to see!!

⎩
⎨
⎧ −=

=
elsewhere

Nnnx
nxN ,0

1,...,2,1,0],[
][

We can define an “imagined” finite-duration signal:

So say there is some signal that “goes on forever” (or at least continues on for longer
than we can or are willing to grab samples)

x[n] n = …, -3, -2, -1, 0, 1, 2, 3, …

We only grab N samples: x[n], n = 0, …, N – 1 We’ve lost some information!

13/22

⇒DFT of collected data does not perfectly show DTFT of complete signal.

Instead, the DFT of the data shows the DTFT of the truncated signal…

So our goal is to understand what kinds of “errors” are in the “truncated” DTFT
…then we’ll know what “errors” are in the computed DFT of the data

What we want to see

A distorted version of
what we want to see

What we can see

)(of samples gives DFT ΩNX

So… DFT of collected data gives “samples” of DTFT of truncated signal

≠ “True” DTFT

∑
∞

−∞=

Ω−
∞ =Ω

n

njenxX][)(:DTFT True""

∑

∑
−

=

Ω−

∞

−∞=

Ω−

=

=Ω

1

0

][

][)(:signal truncatedof DTFT

N

n

nj

n

nj
NN

enx

enxX

∑
−

=

−=
1

0

/2][][:data signal collected of DFT
N

n

Nknj
N enxkX π

14/22

To see what the DFT does show we need to understand how

XN(Ω) relates to X∞(Ω)

From “mult. in time domain” property in DTFT Property Table:

)()()(Ω∗Ω=Ω ∞ qN PXX Convolution causes
“smearing” of X∞(Ω)

⇒ So… XN(Ω) …which we can see via the DFT XN[k] …

is a “smeared” version of X∞(Ω)

[]
[]

2/)1(

2/sin
2/sin)(Ω−−

Ω
Ω

=Ω Nj
q eNP

DTFT

with N=2q+1

“Fact”: The more data you collect, the less smearing
… because Pq(Ω) becomes more like δ(Ω)

[]qnpnxnx qN −=][][

First, we note that:

15/22

)(Ω∞X

Ωπ π2π2− π−

Suppose the infinite-duration signal’s DTFT is:
DTFT of infinite-
duration signal

)(ΩNX

Ωπ π2π2− π−

Then it gets smeared into something that might look like this:

DTFT of truncated
signal

The DFT points are shown after “upper” points are moved (e.g., by matlab’s “fftshift”

Ωπ π2π2− π−

][kX N

Then the DFT computed from the N data points is:

16/22

Example: Infinite-Duration Complex Sinusoid & DFT

...,2,1,0,1,2,3...,][−−−== Ω− nenx nj oSuppose we have the signal

and we want to compute the DFT of N collected samples (n = 0, 1, 2, …, N-1).

This is an important example because in practice we often have signals that
consists of a few significant sinusoids among some other signals (e.g. radar
and sonar).

In practice we just get the N samples and we compute the DFT… but before
we do that we need to understand what the DFT of the N samples will show.

So we first need to theoretically find the DTFT of the infinite-duration
signal.

⎪⎩

⎪
⎨
⎧ <Ω<−Ω−Ω

=Ω∞
elsewhereperiodic

X
ππδ),(

)(
0

π π2π2− π−

)(Ω∞X

Ω

From DTFT Table we have:

Ωo

17/22

From our previous results we know that the DTFT of the collected data is:

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

<Ω<−

⎥⎦
⎤

⎢⎣
⎡ Ω−Ω

⎥⎦
⎤

⎢⎣
⎡ Ω−Ω

=Ω
Ω−Ω−−

elsewhereperiodic

e

N

X
Nj

N

ππ,

2
)(sin

2
)(sin

)(
2/))(1(

0

0

0

Just Delta’s in here ⇒ Use Sifting Property!!

⎪⎩

⎪
⎨
⎧ <Ω<−Ω−Ω

=Ω∞
elsewhereperiodic

X
ππδ),(

)(
0

This is the DTFT on which our data-computed DFT points
will lie… so looking at this DTFT shows us what we can
expect from our DFT processing!!!

[]
[] ⎥⎦

⎤
⎢⎣

⎡
Ω
Ω

∗Ω=Ω Ω−−
∞

2/)1(

2/sin
2/sin)()(Nj

N eNXX
Pq(Ω)

Just a shifted
version of Pq(Ω)

18/22

0Ω
Ω

⎪⎩

⎪
⎨
⎧ <Ω<−Ω−Ω

=Ω∞
elsewhereperiodic

X
ππδ),(

)(
0

DTFT of Finite Number of Samples of a Complex Sinusoid

Digital Frequency Ω (rad/sample)

0Ω

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

<Ω<−

⎥⎦
⎤

⎢⎣
⎡ Ω−Ω

⎥⎦
⎤

⎢⎣
⎡ Ω−Ω

=Ω
Ω−Ω−−

elsewhereperiodic

e

N

X
Nj

N

ππ,

2
)(sin

2
)(sin

)(
2/))(1(

0

0

0

True DTFT of Infinite Duration Complex Sinusoid

The computed DFT would give points
on this curve… the spacing of points
is controlled through “zero padding”

19/22

So… what effect does our choice of N have???

To answer that we can simply look at Pq(Ω) for different values of N = 2q+1 …

-3 -2 -1 0 1 2 3
-5

0

5

10

15

θ/π

-3 -2 -1 0 1 2 3
-20

0

20

40

60

θ/π

N=41

N=11

D
(θ

,4
1)

D
(θ

,1
1)

P q
(Ω

)

P q
(Ω

)

As N grows… looks more like a delta!!
So… less smearing of XN(Ω)!!

20/22

Important points for Infinite-Duration Signal Case
1. DTFT of finite collected data is a “smeared” version of the DTFT of the

infinite-duration data

2. The computed DFT points lie on the “smeared” DTFT curve… not the “true”
DTFT
a. This gives an imperfect view of the true DTFT!

3. “Zero-padding” gives denser set of DFT points… a better view of this
imperfect view of the desired DTFT!!!

21/22

Connections between the CTFT, DTFT, & DFT
ADC

x[0]
x[1]
x[2]

x[N-1]

⇒ DFT
processing

⇓

XN[0]
XN[1]
XN [2]

XN [N-1]
⇓

Inside “Computer”

⇒

)(tx
][nx

CTFTfX)(

2/Fs2/Fs−
f

DTFTFullX)(Ω∞

Ω

Look here to see aliased
view of CTFT

Aliasing

ππ−

DTFTTruncatedX N)(Ω

ππ−
Ω

“Smearing” DFTComputedkX N][

ππ−
Ω

22/22

Errors in a Computed DFT

CTFT

DTFT∞

DTFTN

DFT

Aliasing Error – control through Fs choice
(i.e. through proper sampling)

“Smearing” Error – control through N choice
“window” choice

See DSP course

Zero padding trick

Collect N samples → defines XN(Ω)

Tack M zeros on at the end of the samples

Take (N + M)pt. DFT → gives points on XN(Ω) spaced by 2π/(N+M)
(rather than 2π/N)

This is the only thing we can compute from data… and it has all
these “errors” in it!! The theory covered here allows an engineer
to understand how to control the amount of those errors!!!

“Grid” Error – control through N choice
“zero padding”

	EECE 301 �Signals & Systems� Prof. Mark Fowler

